Skip to main content

Pros and Cons of Different ACL Graft Fixation Devices

  • Chapter
  • First Online:
Controversies in the Technical Aspects of ACL Reconstruction

Abstract

Graft fixation is an important component of success (or failure) of anterior cruciate ligament (ACL) reconstruction. Modern techniques, on the whole, are much stronger than first-generation techniques (such as suture over a post). This is significant as studies have demonstrated the importance of early rehabilitation to limit knee stiffness and prevent the deleterious effects of prolonged immobilization and/or limited weight-bearing for articular cartilage health and knee function. Thus, ACL fixation devices must provide strength and stiffness sufficient for rehabilitation and activities of daily living until biologic fixation has taken place. No ACL graft fixation device is perfect. The surgeon must weigh the pros and cons of the different ACL graft fixation devices before deciding which device to use for a particular patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aga C, Rasmussen MT, Smith SD et al (2013) Biomechanical comparison of interference screws and combination screw and sheath devices for soft tissue anterior cruciate ligament reconstruction on the tibial side. Am J Sports Med 41(4):841–848

    Article  PubMed  Google Scholar 

  2. Ahmad CS, Gardner TR, Groh M et al (2004) Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med 32(3):635–640

    Article  PubMed  Google Scholar 

  3. Ahn JH, Lee SA, Choi SH et al (2012) Femoral cross-pin breakage and its effects on the results of anterior cruciate ligament reconstruction using a hamstring autograft. Arthroscopy 28(12):1826–1832

    Article  PubMed  Google Scholar 

  4. Asik M, Sen C, Tuncay I et al (2007) The mid- to long-term results of the anterior cruciate ligament reconstruction with hamstring tendons using transfix technique. Knee Surg Sports Traumatol Arthrosc 15(8):965–972

    Article  PubMed  Google Scholar 

  5. Barrow AE, Pilia M, Guda T et al (2014) Femoral suspension devices for anterior cruciate ligament reconstruction: do adjustable loops lengthen? Am J Sports Med 42:343–349

    Article  PubMed  Google Scholar 

  6. Bartlett RJ, Clatworthy MG, Nguyen TNV (2001) Graft selection in reconstruction of the anterior cruciate ligament. J Bone Joint Surg [Br] 83-B:625–634

    Article  Google Scholar 

  7. Bjorkman P, Sandelin J, Harilainen A (2015) A randomized prospective controlled study with 5 year follow-up of cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthros 23(8):2353–2359

    Article  Google Scholar 

  8. Black KP, Saunders MM, Stube KC et al (2000) Effects of interference fit screw length on tibial tunnel fixation for anterior cruciate ligament reconstruction. Am J Sports Med 28:846–849

    Article  CAS  PubMed  Google Scholar 

  9. Brand JC, Pienkowski D, Steenlage E et al (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 29(5):705–710

    Article  Google Scholar 

  10. Brown CH Jr, Hecker AJ, Hipp JA et al (1993) The biomechanics of interference screw fixation of patellar tendon anterior cruciate ligament grafts. Am J Sports Med 21:880–886

    Article  PubMed  Google Scholar 

  11. Brown CH Jr, Wilson DR, Hecker AT et al (2004) Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading. Arthroscopy 20(9):922–935

    Article  PubMed  Google Scholar 

  12. Butler JC, Branch TP, Hutton WC (1994) Optimal graft fixation: the effect of gap size and screw size on bone plug fixation in ACL reconstruction. Arthroscopy 10:524–529

    Article  CAS  PubMed  Google Scholar 

  13. Choi NH, Son KM, Yoo SY et al (2012) Femoral tunnel widening after hamstring anterior cruciate ligament reconstruction with bioabsorbable transfix. Am J Sports Med 40(2):383–387

    Article  PubMed  Google Scholar 

  14. Clatworthy MG, Annear P, Bulow JU et al (1999) Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 7(3):138–145

    Article  CAS  PubMed  Google Scholar 

  15. Cooper DE (1998) Biomechanical properties of the central third patellar tendon graft: effect of rotation. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S16–S19

    Article  PubMed  Google Scholar 

  16. Coleridge SD, Amis AA (2004) A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:391–397

    Article  PubMed  Google Scholar 

  17. Escamilla RF, MacLeod TD, Wilk KE et al (2012) Cruciate ligament loading during common knee rehabilitation exercises. J Eng Med 226(9):670–680

    Article  Google Scholar 

  18. Frosch S, Rittstieg A, Balcarek P et al (2012) Bioabsorbable interference screw versus bioabsorbable cross pins: influence of femoral graft fixation on the clinical outcome after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:2251–2256

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fu SC, Cheng WH, Cheuk YC, Mok TY, Rolf C, Yung SH, Chan KM (2013) Development of vitamin C irrigation saline to promote graft healing in anterior cruciate ligament Reconstruction. J Ortho Trans 1(1):67–77

    Google Scholar 

  20. Fu SC, Cheuk YC, Chiu WY, Yung SH, Rolf CG, Chan KM (2015) Tripeptide-copper complex GHK-Cu (II) transiently improved healing outcome in a rat model of ACL reconstruction. J Orthop Res 33(7):1024–1033

    Article  CAS  PubMed  Google Scholar 

  21. Goradia VK, Rochat MC, Kida M et al (2000) Natural history of a hamstring tendon autograft used for anterior cruciate ligament reconstruction in a sheep model. Am J Sports Med 28(1):40–46

    Article  CAS  PubMed  Google Scholar 

  22. Hamner DL, Brown CH Jr, Steiner ME et al (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg 81-A:549–557

    Article  Google Scholar 

  23. Harilainen A, Sandelin J (2009) A prospective comparison of 3 hamstring fixation devices; rigidfix, bioscrew and intrafix; randomized into 4 groups with 2 years of follow-up. Am J Sports Med 37(4):699–706

    Article  PubMed  Google Scholar 

  24. Harvey AR, Thomas NP, Amis AA (2003) The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee 10:97–102

    Article  CAS  PubMed  Google Scholar 

  25. Harvey AR, Thomas NP, Amis AA (2005) Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Joint Surg [Br] 87-B:593–603

    Article  Google Scholar 

  26. Hill PF, Russell VJ, Salmon LJ et al (2005) The influence of supplementary tibial fixation on laxity measurements after anterior cruciate ligament reconstruction with hamstring tendons in female patients. Am J Sports Med 33(1):94–101

    Article  PubMed  Google Scholar 

  27. Hoher J, Moller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 7(4):215–219

    Google Scholar 

  28. Ibrahim SAR, Ghafar SA, Marwan Y et al (2014) Intratunnel versus extratunnel autologous hamstring double-bundle graft for anterior cruciate ligament reconstruction. A comparison of 2 femoral fixation procedures. Am J Sports Med 43(1):161–168

    Article  PubMed  Google Scholar 

  29. Ishibashi Y, Rudy TW, Livesay GA et al (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 13:177–182

    Article  CAS  PubMed  Google Scholar 

  30. Johnson JS, Smith SD, Laprade CM et al (2014) A biomechanical comparison of femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction under high loads. Am J Sports Med 43(1):154–160

    Article  PubMed  Google Scholar 

  31. Kohn D, Rose C (1994) Primary stability of interference screw fixation: Influence of screw diameter and insertion torque. Am J Sports Med 22(3):334–338

    Google Scholar 

  32. Kousa P, Jarvinen TLN, Vihavainen M et al (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31(2):182–188

    Article  PubMed  Google Scholar 

  33. Kuroda R, Kurosaka M, Yoshiya S, Mizuno K (2000) Localization of growth factors in the reconstructed anterior cruciate ligament: immunohistological study in dogs. Knee Surg Sports Traumatol Arthrosc 8:120–126

    Article  CAS  PubMed  Google Scholar 

  34. KurosakaM YS, Andrish JT (1987) A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 15:225–229

    Article  Google Scholar 

  35. Lee YS, Ahn JH, Kim JG et al (2008) Analysis and prevention of intra-operative complication of TransFix fixation in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16(7):639–644

    Article  PubMed  Google Scholar 

  36. Lui PP, Lee YW, Mok TY, Cheuk YC, Chan KM (2013) Alendronate reduced peri-tunnel bone loss and enhanced tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction. Eur Cell Mater 25:78–96

    Article  CAS  PubMed  Google Scholar 

  37. Lui PP, Wong OT, Lee YW (2014) Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction. Am J Sports Med 42(3):681–689

    Article  PubMed  Google Scholar 

  38. Lubowitz JH, Schwartzberg R, Smith P (2015) Cortical suspensory button versus aperture interference screw fixation for knee anterior cruciate ligament soft-tissue allograft: a prospective, randomized controlled trial. Arthroscopy doi: 10.1016/j.arthro.2015.03.006

  39. Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27(1):35–43

    Article  CAS  PubMed  Google Scholar 

  40. Malhan K, Kumar A, Rees D (2002) Tibial cyst formation after anterior cruciate ligament reconstruction using a new bioabsorbable screw. Knee 9:73–75

    Article  CAS  PubMed  Google Scholar 

  41. Mascarenhas R, Saltzman BM, Sayegh ET et al (2015) Bioabsorbable versus metallic interference screws: a systematic review of overlapping meta-analysis. Arthroscopy 31(3):561–568

    Google Scholar 

  42. Milano G, Mulas PD, Ziranu N et al (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22(6):660–668

    Article  PubMed  Google Scholar 

  43. Noyes FR, Butler DL, Grood ES et al (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg 66A:344–352

    Article  Google Scholar 

  44. Papageorgiou CD, Ma CB, Abramowitch SD et al (2001) A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med 29(5):620–626

    Article  CAS  PubMed  Google Scholar 

  45. Pena F, Grontvedt T, Brown GA et al (1996) Comparison of failure strength between metallic and absorbable interference screws: influence of insertion torque, tunnel-bone block gap, bone mineral density and interference. Am J Sports Med 24:329–334

    Article  CAS  PubMed  Google Scholar 

  46. Persson A, Kjellsen AB, Fjeldsgaard K et al (2015) Registry data highlight increased revision rates for endobutton/biosure HA in ACL reconstruction with hamstring tendon autograft. A nationwide cohort study from the Norwegian knee ligament registry, 2004–2013. Am J Sports Med doi:10.1177/0363546515584757

  47. Petre BM, Smith SD, Jansson KS et al (2012) Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction. A comparative biomechanical study. Am J Sports Med 41(2):416–422

    Article  PubMed  Google Scholar 

  48. Pinczewski LA, Lyman J, Salmon LJ et al (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35:564–574

    Article  PubMed  Google Scholar 

  49. Price R, Stoney J, Brown G (2010) Prospective randomized comparison of endobutton versus cross-pin femoral fixation in hamstring anterior cruciate ligament reconstruction with 2-year follow-up. ANZ J Surg 80(3):162–165

    Article  PubMed  Google Scholar 

  50. Prodromos CC, Joyce BT, Shi K et al (2005) A meta-analysis of stability after anterior cruciate ligament reconstruction as a function of hamstring versus patellar tendon graft and fixation type. Arthroscopy 21(10):1202e1–1202e9

    Article  Google Scholar 

  51. Rodeo SA, Arnoczky SP, Torzilli PA et al (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg 75-A:1795–1803

    Article  Google Scholar 

  52. Rodeo SA, Kawamura S, Kim HJ et al (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34:1790–1800

    Article  PubMed  Google Scholar 

  53. Rose T, Hepp P, Venus J et al (2006) Prospective randomized clinical comparison of femoral transfixation versus bioscrew fixation in hamstring tendon ACL reconstruction: a preliminary report. Knee Surg Sports Traumatol Arthrosc 14(8):730–738

    Article  PubMed  Google Scholar 

  54. Shino K, Pflaster DS (2000) Comparison of eccentric and concentric screw placement for hamstring graft fixation in the tibial tunnel. Knee Surg Sports Traumatol Arthrosc 8:73–75

    Article  CAS  PubMed  Google Scholar 

  55. Simonian PT, Sussman PS, Baldini TH et al (1998) Interference screw position and hamstring graft location for anterior cruciate ligament reconstruction. Arthroscopy 14:459–464

    Article  CAS  PubMed  Google Scholar 

  56. Singhatat W, Lawhorn KW, Howell SM et al (2002) How four weeks of implantation affect the strength and stiffness of a tendon graft in a bone tunnel: a study of two fixation devices in an extraarticular model in ovine. Am J Sports Med 30(4):505–513

    Article  Google Scholar 

  57. Smith KE, Garcia M, McAnuff K et al (2012) Anterior cruciate ligament fixation: is radial force a predictor of the pullout strength of soft-tissue interference screws? Knee 19:786–792

    Article  PubMed  Google Scholar 

  58. Stadelmaier DM, Lowe WR, Ilai OA et al (1999) Cyclic pull-out strength of hamstring tendon graft fixation with soft tissue interference screws. Influence of screw length. Am J Sports Med 27(6):778–783

    Article  CAS  PubMed  Google Scholar 

  59. Steiner ME, Hecker AT, Brown CH Jr et al (1994) Anterior cruciate ligament graft fixation: comparison of hamstring and patellar tendon grafts. Am J Sports Med 22:240–247

    Article  CAS  PubMed  Google Scholar 

  60. Stengel D, Casper D, Bauwens K et al (2009) Bioresorbable pins and interference screws for fixation of hamstring tendon grafts in anterior cruciate ligament reconstruction surgery. A randomized controlled trial. Am J Sports Med 37(9):1692–1698

    Article  PubMed  Google Scholar 

  61. Tsuda E, Fukuda Y, Loh JC et al (2002) The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy 18(9):960–967

    Article  PubMed  Google Scholar 

  62. Unterhauser FN, Bail HJ, Hoher J, Haas NP, Weiler A (2003) Endoligamentous revascularization of an anterior cruciate ligament graft. Clin Orthop Relat Res 414:276–288

    Article  Google Scholar 

  63. Volpi P, Marinoni L, Bait C et al (2009) Tibial fixation in anterior cruciate ligament reconstruction with bone-patellar tendon-bone and semitendinosus-gracilis autografts. A comparison between bioabsorbable screws and bioabsorbable cross-pin fixation. Am J Sports Med 37(4):808–812

    Article  PubMed  Google Scholar 

  64. Weiler A, Hoffmann RFG, Siepe CJ (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28(3):356–359

    Article  CAS  PubMed  Google Scholar 

  65. Weiler A, Peine R, Pashmineh-Azar A et al (2002) Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18(2):113–123

    Article  PubMed  Google Scholar 

  66. Wen CY, Qin L, Lee KM, Chan KM (2009) The use of brushite calcium phosphate cement for enhancement of bone-tendon integration in an anterior cruciate ligament reconstruction rabbit model. Journal of biomedical materials research. Part B, App Biomaterials 89:466–474

    Article  Google Scholar 

  67. Woo SL, Hollis JM, Adams DJ et al (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  PubMed  Google Scholar 

  68. Zantop T, Weimann A, Wolle K et al (2007) Initial and 6 weeks postoperative structural properties of soft tissue anterior cruciate ligament reconstructions with cross-pin or interference screw fixation: an in vivo study in sheep. Arthroscopy 23(1):14–20

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Ming Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Herickhoff, P.K., Safran, M.R., Yung, P., Chan, KM. (2017). Pros and Cons of Different ACL Graft Fixation Devices. In: Nakamura, N., Zaffagnini, S., Marx, R., Musahl, V. (eds) Controversies in the Technical Aspects of ACL Reconstruction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52742-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52742-9_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52740-5

  • Online ISBN: 978-3-662-52742-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics