Skip to main content

Abstract

As a pseudobinary system material with the characteristics of adjustable band gap, high optical absorption coefficient, long carrier lifetime, high electron mobility, etc. (Proceedings of SPIE, V7388:P73880J-1, 2009), HgCdTe has always been the preferred material for fabricating infrared detectors for many years. As the requirements of the infrared systems on the detector performances increase continuously, the HgCdTe detector technology has become significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogalski A. New material systems for third generation infrared detectors. Proc SPIE. 2009;V7388:P73880J-1.

    Google Scholar 

  2. Bratt PR, Johnson SM, Rhiger DR, et al. Historical perspectives on HgCdTe material and device development at Raytheon vision systems. Proc SPIE. 2009;7298.

    Google Scholar 

  3. Bensussan P, Tribolet P. 50 years of successful MCT research and production in France. Proc SPIE. 2009;7298.

    Google Scholar 

  4. D’Souza AI, Robinson EW, Stapelbroek MG. Visible to SWIR response of HgCdTe HDVIP detectors. Proc SPIE. 2009;7298.

    Google Scholar 

  5. Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays. J Appl Phy. 2009;105(09).

    Google Scholar 

  6. Zhenhua Ye. Research on integrated HgCdTe two-color detector chip techology. Shanghai: Shanghai Institute of Technical Physics; 2005.

    Google Scholar 

  7. Srivastav V, Pal R, Vyas HP. Overview of etching technologies used for HgCdTe. Opto-Electron Rev. 2005;13(3):197–211.

    Google Scholar 

  8. Zhou W, Ye Z, Xing W, et al. The study on the profile of HgCdTe micro-mesa arrays isolated by dry-etch process. Laser Infrared. 2006;36(11):1029–31.

    Google Scholar 

  9. Ye Z, Hu X, Quan Z, et al. Study on etch pattern of dry technique for HgCdTe IRFPAS. J Infrared Millimeter Waves. 2006;25(5):325–8.

    Google Scholar 

  10. Guo J, Ye Z, Hu X, et al. XPS analysis of the HgCdTe surface etched by ICP. Laser Infrared. 2005;35(11):832–4.

    Google Scholar 

  11. Wenhong Zhou. Research on the ICP technique of HgCdTe micro-mesa dry isolation. Shanghai: Shanghai Institute of Technical Physics; 2009.

    Google Scholar 

  12. Ye Z, Wu J, Hu X, et al. Study of integrated MW1/MW2 two-color HgCdTe infrared detector arrays. J Infrared Millimeter Waves. 2004;23(3):193–196.

    Google Scholar 

  13. He L, Hu X, Ding R, et al. Recent progress of the 3rd generation infrared FPAs. Infrared Laser Eng. 2007;36(5):696–701.

    Google Scholar 

  14. Hu W, Ye Z, Liao L, et al. 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Optics Lett. 2014;39(17).

    Google Scholar 

  15. Ye Zh H, Quan Zh J, Zhou W H, et al. The 2006 joint 31st international conference on infrared and millimeter waves and 14th international conference on terahertz electronics: an investigation on spectral-characteristic of HgCdTe two-color detector, Shanghai, 18–22 Sept 2006. China: Shanghai.

    Google Scholar 

  16. Baylet J, Gravrand Q, Laffosse E, et al. Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors. J Electron Mater. 2004;33(6):690–700.

    Article  ADS  Google Scholar 

  17. Horn S, Norton P, Cincotta T, et al. Challenges for third-generation cooled imagers. Proc SPIE. 2003;5074:44–51.

    Article  ADS  Google Scholar 

  18. Harris KA, Enders DW, Yanka RW, et al. Electron cyclotron resonance plasma etching of HgTe-CdTe superlattices grown by photo-assisted molecular beam epitaxy. J Electron Mater. 1995;24(9):1201–6.

    Article  ADS  Google Scholar 

  19. Antoni Rogalski. Infrared detectors: status and trends. Prog Quantum Electron. 2003;27(2–3):59–210.

    Google Scholar 

  20. Hu X, Ye Z, Ding R, et al. Low energy inductively coupled plasma etching of HgCdTe. Proc SPIE. 2005;5964.

    Google Scholar 

  21. Quirk M, Serda J. Semiconductor manufacturing technology. In: Han Z, Hai C, Xu Q, et al., editor. Beijing: Publishing House of Electronics Industry; 2004.

    Google Scholar 

  22. Ye Z, Guo J, Hu X, et al. A study on etch rate of dry technique for HgCdTe IRFPAs. Laser Infrared. 2005;35(11):829–31.

    Google Scholar 

  23. Chang CY, Sze SM. ULSI technology. New York: McGraw-Hill; 1996.

    Google Scholar 

  24. Zhou W, Ye Z, Hu X, et al. Study on mask technology of HgCdTe etched by inductively coupled plasma dry etching. Laser Infrared. 2007;37(348):928–30.

    Google Scholar 

  25. Smith EPG, Musca CA, Redfern DA, et al. H2-based dry plasma etching for mesa structuring of HgCdTe. J Electron Mater. 2000;29(6):853–8.

    Article  ADS  Google Scholar 

  26. Haakenaaen R, Colin T, Steen H, et al. Electron beam induced current study of ion beam milling type conversion in molecular beam epitaxy vacancy-doped CdxHg1-xTe. J Electron Mater. 2000;29(6):849–52.

    Article  ADS  Google Scholar 

  27. Ye Z, Wu J, He L, et al. A preliminary study on MBE-grown HgCdTe two-color FPAs. Proc SPIE. 2004;5640.

    Google Scholar 

  28. Smith EPG, Venzor GM, Goetz PM. Scablity of dry-etch processing for small unit-cell HgCdTe focal-plane arrays. J Electron Mater. 2003;32(7):821–6.

    Article  ADS  Google Scholar 

  29. Antoszewski J, Musca CA, Dell JM, et al. Characterization of Hg0.7Cd0.3Te n-on p-type structure obtained by reactive ion etching induced p-to n conversion. J Electron Mater. 2000;29(6):837–40.

    Article  ADS  Google Scholar 

  30. Ye Zhenhua Hu, Xiaoning Zhang Haiyan, et al. Study of dark current for mercury cadmium telluride long-wavelength photodiode detector with different structures. J Infrared Millimeter Waves. 2004;23(2):86–90.

    Google Scholar 

  31. Horn S, Norton P, Cincotta T, et al. Challenges for third-generation cooled imagers. Proc SPIE. 2003;5074:44–51.

    Article  ADS  Google Scholar 

  32. Vossen JL, Kern W. Thin film processing. New York: Academic Press; 1978.

    Google Scholar 

  33. Yang KD, Lee YS, Lee HC. Annealing behavior of hydrogen-plasma-induced n-type HgCdTe. Appl Phys Lett. 2005;87(11).

    Google Scholar 

  34. White J, Pal R, Dell JM. p-to-n type conversion mechanisms for HgCdTe exposed to H2/CH4 plasmas. J Electron Mater. 2001;30(6):762–76.

    Article  ADS  Google Scholar 

  35. Neyts E, Yan M, Bogaerts A, et al. Particle-in-cell/monte carlo simulations of a low-pressure capacitively coupled radio-frequency discharge: effect of adding H2 to an Ar discharge. J Appl Phys. 2003;93(9).

    Google Scholar 

  36. Dell JM, Antoszewski J, White JK, et al. RIE induced n-on-p junction HgCdTe photodiodes: effects of passivant technology on bake stability. Proc SPIE. 2001;4454:106–14.

    Article  ADS  Google Scholar 

  37. Stoltz AJ, Benson JD, Baresi JB. Macro-loading effects of electron-cyclotron resonance etched II–VI materials. J Electron Mater. 2004;33(6):684–9.

    Article  ADS  Google Scholar 

  38. Keller RC, Seelmann-Eggebert M, Richter HJ. Dry etching of HgCdTe using CH4/H2/Ar/N2 electron cyclotron resonance plasmas. J Electron Mater. 1996;25(8):1270–5.

    Article  ADS  Google Scholar 

  39. Benson JD, Stoltz AJ, Boyd PR, et al. Lithography factors that determine the aspect ratio of electron cyclotron resonance plasma etched HgCdTe trenches. J Electron Mater. 2003;32(7):686–91.

    Article  ADS  Google Scholar 

  40. Mogab CJ. The loading effect in plasma etching. J Electrochem Soc. 1977;124(8):1262–8.

    Article  Google Scholar 

  41. Laffosse E, Baylet J, Chamonal JP, et al. Inductively coupled plasma etching of HgCdTe using a CH4-based mixture. J Electron Mater. 2005;34(6):740–5.

    Article  ADS  Google Scholar 

  42. Sonag KH, Yoon TH, Hahn SR, et al. Changes in surface characteristics of HgCdTe by dry etching. Proc SPIE. 1998;3436:77–83.

    Article  ADS  Google Scholar 

  43. Stoltz AJ, Benson JD, Smith PJ, et al. Morphology of inductively coupled plasma processed HgCdTe surfaces. J Electron Mater. 2008;37(9):1225–30.

    Article  ADS  Google Scholar 

  44. Bommena R, Velicua S, Boieriu P, et al. Uniformity studies of inductively coupled plasma etching in fabrication of HgCdTe detector arrays. Proc SPIE. 2007;6542.

    Google Scholar 

  45. Chandra D, Schaake HF, Aqariden F, et al. p to n conversion in SWIR mercury cadmium telluride with ion milling. J Electron Mater. 2006;35(6):1470–1473.

    Google Scholar 

  46. Stoltz AJ, Sperry MJ, Benson JD, et al. A langmuir probe investigation of electron cyclotron resonance argon-hydrogen plasmas. J Electron Mater. 2005;34(6):733–9.

    Article  ADS  Google Scholar 

  47. Smith EPG, Musca CA, Redfern DA, et al. H2-based dry plasma etching for mesa structuring of HgCdTe. J Electron Mater. 2000;29(6):853–8.

    Article  ADS  Google Scholar 

  48. Lee MH, Jang SH, Chung CW. Floating probe for electron temperature and ion density measurement applicable to processing plasmas. J Appl Phys. 2007;101(3).

    Google Scholar 

  49. Rhoderick EH. Metal-semiconductor contacts. Oxford: Clarendon Press; 1978.

    Google Scholar 

  50. Liu E, Zhu B. Semiconductor physics. 4th ed. Beijing: National Defence Industry Press; 2007. p. 211.

    Google Scholar 

  51. Spicer WE, Friedman DJ, Carey GP. The electrical properties of metallic contacts on Hg1–xCdxTe. J Vac Sci Technol. 1988;6(4):2746–51.

    Article  ADS  Google Scholar 

  52. Zimmermann H, Keller RC, Meisen P, et al. Interface formation between deposited Sn and Hg0.8Cd0.2Te. J Electron Mater. 1996;25(8):1293–9.

    Article  ADS  Google Scholar 

  53. Leech PW. The specific contact resistance of ohmic contacts to HgTe/Hg1−xCdxTe heterostructures. J Appl Phys. 1990;68(2):907–9.

    Article  ADS  Google Scholar 

  54. Beck WA, Davis GD, Goldberg AC. Resistance and 1/f noise of Au, Al, and Ge contacts to (Hg, Cd)Te. J Appl Phys. 1990;67(10):6340–9.

    Article  ADS  Google Scholar 

  55. Merken P, John J, Zimmermann L, et al. Technology for very dense hybrid detector arrays using electroplated indium solder bumps. IEEE Trans Adv Packag. 2003;26(1):60–4.

    Article  Google Scholar 

  56. Pierre C, Francois M, Jean-Luc M, et al. A megapixel HgCdTe MWIR focal plane array with a 15 μm pitch. Proc SPIE. 2004;5251:65–72.

    Article  Google Scholar 

  57. Caccia M. The challenge of hybridization. Nucl Instrum Meth Phys Res A. 2001;465:195–9.

    Article  ADS  Google Scholar 

  58. Burggraaf P. Chip scale and flip chip: attractive solutions. Solid State Technol. 1998;7:239–46.

    Google Scholar 

  59. Chang C, Sze S. ULSI technology.New York: McGraw-Hill; 1996.

    Google Scholar 

  60. Babiarz A. Key process controls for underfilling flip chips. Solid State Technol. 1997;7:77–81.

    Google Scholar 

  61. Gemme C, Fiorello AM, Gagliardi G, et al. Study of indium bumps for the ATLAS pixel detector. Nucl Instrum Meth Phys Res A. 2001;465:200–3.

    Article  ADS  Google Scholar 

  62. Jiang JT, Tsao S, O’Sullivan T, et al. Fabrication of indium bumps for hybrid infrared focal plane array applications. Infrared Phys Technol. 2004;45:143–151.

    Google Scholar 

  63. Cihangir S, Kwan S. Characterization of indium and solder bump bonding for pixel detectors. Nucl Instrum Meth Phys Res A. 2002;476:670–5.

    Article  ADS  Google Scholar 

  64. Babiarz A. Key process controls for underfilling flip chips. Solid State Technol. 1997;7:77–81.

    Google Scholar 

  65. Tissot JL, Marion F. Collective flip-chip technology for HgCdTe IRFPAs. Proc SPIE. 1996;2894:115–22.

    Article  ADS  Google Scholar 

  66. Destefanis G, Astier A, Baylet J, et al. Recent developments of high-complexity HgCdTe focal plane arrays at leti infrared laboratory. J Electron Mater. 2003;32(7):592–601.

    Article  ADS  Google Scholar 

  67. Oppermann HH, Kallmayer C, Klein M, et al. Advanced flip chip technologies in RF, microwave and MEMS applications. Proc SPIE. 2000;4019:308–14.

    Article  ADS  Google Scholar 

  68. Kwan S, Appel JA, Chiodini G, et al. The 7th workshop on electronics for LHC experiments: a study of thermal cycling and radiation effects on indium and solder bump bonding, Batavia, 10–14 Sept 2001. USA: Fermilab.

    Google Scholar 

  69. John J, Zinmermann L. High density hybrid interconnect technologies. Proc SPIE. 2004;5454:60–7.

    Google Scholar 

  70. Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays. J Appl Phys. 2009;105(09):1103–46.

    Article  Google Scholar 

  71. Ye Z, Yin W, Huang J, et al. 128 × 128 SW/MW two-color HgCdTe IRFPAs. J Infrared Millimeter Waves. 2010;29(6):415–8.

    Google Scholar 

  72. Brill G, Velicu S, Boieriu P, et al. MBE growth and device processing of MWIR HgCdTe on large area Si substrate. J Electron Mater. 2001;30(6):717–22.

    Article  ADS  Google Scholar 

  73. Hu X, Zhang H, Li Y, et al. Thermal stress analysis of HgCdTe focal plane arrays on Si substrates. Laser Infrared. 2006;36(11):1020–1022.

    Google Scholar 

  74. Feng ZC, Liu HD. Generalized formula for curvature radius and layer stresses caused by thermal strain in semiconductor multilayer structures. J Appl Phys. 1983;54(1):83–5.

    Article  ADS  Google Scholar 

  75. Yue T, Yin F, Hu X. Characterization analysis of dark current in HgCdTe/Si photodiodes. Laser Infrared. 2007;37:931–934.

    Google Scholar 

  76. He L, Fu XL, Zh Wei Q, et al. MBE HgCdTe on alternative substrates for FPA applications. J Electron Mater. 2008;37(9):1189–99.

    Article  ADS  Google Scholar 

  77. Capper P. Properties of narrow gap cadmium based compounds. England: Short Run Press Ltd.; 1994. p. 399–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li He .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 National Defense Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, L., Yang, D., Ni, G. (2016). HgCdTe Detector Chip Technology. In: Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52718-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52718-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52716-0

  • Online ISBN: 978-3-662-52718-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics