Skip to main content

CdTe/Si Composite Substrate and HgCdTe Epitaxy

  • Chapter
  • First Online:
Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN
  • 727 Accesses

Abstract

Advanced HgCdTe infrared focal plane array (IRFPA) technology extends the ability of optoelectronic detection from single-band two-dimensional target imaging to multiple spectral three-dimensional imaging. It is developing continuously toward the direction to achieve higher resolution and more accurate identification. In terms of material technologies, the IRFPAs are requiring larger size wafers with higher performances and more complex structures in order to better detect multiple information from multiple objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faurie JP, Sporken R, Sivananthan S, Lange MD. New development on the control of homoepitaxial and heteroepitaxial growth of CdTe and HgCdTe by MBE. J Cryst Growth. 1991;111(1–4):698–710.

    Article  ADS  Google Scholar 

  2. Badano G, Chang Y, Garland JW, Sivananthan S. In-situ ellipsometry studies of adsorption of Hg on CdTe(211)B/Si(211) and molecular beam epitaxy growth of HgCdTe(211)B. J Electron Mater. 2004;33(6):583–9.

    Article  ADS  Google Scholar 

  3. Niraula M, Yasuda K, Ohnishi H, Takahashi H, Eguchi K, Noda K, Agata Y. Direct growth of high-quality thick CdTe epilayers on Si(211) substrates by metalorganic vapor phase epitaxy for nuclear radiation detection and imaging. J Electron Mater. 2006;35(6):1257–61.

    Article  ADS  Google Scholar 

  4. Wang YZ, Chen L, Wu Y, et al. Heteroepitaxy of CdTe on tilting Si(211) substrates by molecular beam epitaxy. J Cryst Growth. 2006;290(2):436–40.

    Article  ADS  Google Scholar 

  5. Million A, Dhar NK, Dinan JH. Heteroepitaxy of CdTe on {211}Si substrates by molecular beam epitaxy. J Cryst Growth. 1996;159(1–4):76–80.

    Article  ADS  Google Scholar 

  6. Rujirawat S, Almeida LA, Chen YP, Sivananthan S, Smith DJ. High quality large-area CdTe(211)B on Si(211) grown by molecular beam epitaxy. Appl Phys Lett. 1997;71(13):1810–2.

    Article  ADS  Google Scholar 

  7. Delyon TJ, Rajavel D, Johnson SM, Cockrum CA. Molecular-beam epitaxial-growth of CdTe(112) on Si(112) substrates. Appl Phys Lett. 1995;66(16):2119–21.

    Article  ADS  Google Scholar 

  8. Bornfreund R, Rosbeck JP, Thai YN, Smith EP, Lofgreen DD, Vilela MF, Buel AA, Newton MD, Kosai K, Johnson SM, de Lyon TJ, Jensen JE, Tidrow MZ. High-performance LWIR MBE-grown HgCdTe/Si focal plane arrays. J Electron Mater. 2007;36(8):1085–91.

    Article  ADS  Google Scholar 

  9. Varesi JB, Buell AA, Peterson JM, Bornfreund RE, Vilela MF, Radford WA, Johnson SM. Performance of molecular-beam epitaxy-grown midwave infrared HgCdTe detectors on four-inch Si substrates and the impact of defects. J Electron Mater. 2003;32(7):661–6.

    Article  ADS  Google Scholar 

  10. Xiangliang Fu. MBE HgCdTe on Si and Ge substrates. Infrared. 2005;9:19–24.

    Google Scholar 

  11. Zavitz DH, Evstigneeva A, Singh R, et al. Influence of arsenic on the atomic structure of the Si(112) surface. J Electron Mater. 2005;34(6):839–45.

    Article  ADS  Google Scholar 

  12. Jaime-Vasquez M, Martinka M, Jacobs RN, et al. In-Situ spectroscopic study of the As and Te on the Si(112) surface for high-quality epitaxial layers. J Electron Mater. 2006;35(6):1455–60.

    Article  ADS  Google Scholar 

  13. Chen L. Doctoral thesis. Research on MBE on large scale Si based CdTe composite substrate. Shanghai: Shanghai Institute of Technical Physics, CAS; 2005.

    Google Scholar 

  14. Brill G, Chen Y, Dhar NK, et al. Nucleation of ZnTe/CdTe epitaxy on high-Miller-index Si surfaces. J Electron Mater. 2003;32(7):717–22.

    Article  ADS  Google Scholar 

  15. Fulk C, Sivananthan S, Zavitz D, et al. The structure of the Si(211) surface. J Electron Mater. 2006;35(6):1449–54.

    Article  ADS  Google Scholar 

  16. Fulk C, Sporken R, Dumont J, et al. Arsenic deposition as a precursor layer on Silicon (211) and (311) surfaces. J Electron Mater. 2005;34(6):846–50.

    Article  ADS  Google Scholar 

  17. Dabrowski J, MusSig HJ. Silicon surfaces and formation of interfaces. Singapore: World Scientific; 2000.

    Book  Google Scholar 

  18. Lander JJ, Gobeli GW, Morrison J. Structural properties of cleaved Silicon and germanium surfaces. J Appl Phys. 1963;34(8):2298–306.

    Article  ADS  Google Scholar 

  19. Schlier RE, Farnsworth HE. Structure and adsorption characteristics of clean surfaces of germanium and Silicon. J Chem Phys. 1959;30(4):917–25.

    Article  ADS  Google Scholar 

  20. Krüger P, Pollmann J. Ab initio calculations of Si, As, S, Se, and Cl adsorption on Si(001) surfaces. Phys Rev B. 1993;47(4):1898–910.

    Article  ADS  Google Scholar 

  21. Olmstead MA, Bringans RD, Uhrberg RIG, et al. Arsenic overlayer on Si(111): removal of surface reconstruction. Phys Rev B. 1986;34(8):6041–4.

    Article  ADS  Google Scholar 

  22. Centoni SA, Sadigh B, Gilmer GH, et al. First-principles calculation of free Si(100) surface impurity enrichment. Appl Phys Lett. 2005;87(23):232101.

    Article  ADS  Google Scholar 

  23. Mankefors S. Ab initio study of the Ge(211) and Si(211) bulk terminated surfaces. Surf Sci. 1999;443(1–2):99–104.

    Article  ADS  Google Scholar 

  24. Grein CH. First principles calculations of Si(211) surface reconstructions. J Cryst Growth. 1997;180(1):54–60.

    Article  ADS  Google Scholar 

  25. Dhar NK, Goldsman N, Wood CEC. Tellurium desorption kinetics from (112) Si: Si-Te binding energy. Phys Rev B. 2000;61(12):8256–61.

    Article  ADS  Google Scholar 

  26. Gupta BC, Batra IP, Sivananthan S. Growth of Te on As-exposed Si(211): electronic structure calculations. Phys Rev B. 2005;71(7):075328.

    Article  ADS  Google Scholar 

  27. Sen P, Batra IP, Sivananthan S, et al. Electronic structure of Te- and As-covered Si(211). Phys Rev B. 2003;68(4):045314.

    Article  ADS  Google Scholar 

  28. Prokes SM, Glembocki OJ. Studies of the formation of Ga and Al wires on Si(112) facet surfaces. J Mater Sci Mater Electron. 2001;12(4–6):277–83.

    Article  Google Scholar 

  29. Baski AA, Whitman LJ. A scanning-tunneling-microscopy study of hydrogen adsorption on Si(112). J Vacu Sci Tech A. 1995;13(3):1469–72.

    Article  ADS  Google Scholar 

  30. Erwin SC, Baski AA, Whitman LJ, et al. Frenkel-Kontorova model of vacancy-line interactions on Ga/Si(112). Phys Rev Lett. 1999;83(9):1818–21.

    Article  ADS  Google Scholar 

  31. Michel EG, Etelaniemi V, Materlik G. Adsorption Sites of Br on Si(211) investigated with X-ray standing wave fields. Surf Sci. 1992;270:89–93.

    Article  ADS  Google Scholar 

  32. Cho ES, Kim MK, Park JW, et al. Photoemission study on the Sb-induced reconstruction of the Si(112) surface. Surf Sci. 2005;591(1–3):38–44.

    Article  ADS  Google Scholar 

  33. Segall MD, Lindan PJD, Probert MJ et al. First-principles Simulation: ideas, illustrations and the CASTEP code. J Phys Cond Matt. 2002;14(11):2717–44.

    Google Scholar 

  34. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892–5.

    Article  ADS  Google Scholar 

  35. Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45(23):13244–9.

    Article  ADS  Google Scholar 

  36. Fischer TH, Almlof J. General methods for geometry and wave function optimization. J Phys Chem. 1992;96(24):9768–74.

    Article  Google Scholar 

  37. Pack JD, Monkhorst HJ. Special points for Brillouin-zone integrations—a reply. Phys Rev B. 1977;16(4):1748–9.

    Article  ADS  MathSciNet  Google Scholar 

  38. Huang Y, Chen XS, Zhu XY, et al. Theoretical studies about absorption on silicon surface. Int J Mod Phys B. 2007;21(15):2577–614.

    Article  ADS  Google Scholar 

  39. Baski AA, Whitman LJ. Quasiperiodic nanoscale faceting of high-index Si surfaces. Phys Rev Lett. 1995;74(6):956–9.

    Article  ADS  Google Scholar 

  40. Huang Y, Chen XS, Duan H, et al. Selective growth of CdTe on Si(211): first-principle calculations. J Electron Mater. 2007;36(8):925–30.

    Article  ADS  Google Scholar 

  41. Sun L. Doctoral thesis. First principle research on infrared photoelectron material HgCdTe functional doping and defects. Shanghai: Shanghai Institute of Technical Physics, CAS;2005.

    Google Scholar 

  42. Benson JD, Stoltz AJ, Varesi JB, et al. Surface structure of plasma-etched (211)B HgCdTe. J Electron Mater. 2005;34(6):726–32.

    Article  ADS  Google Scholar 

  43. Rujirawat S, Smith DJ, Faurie JP, et al. Microstructural and optical characterization of CdTe(211)B/ZnTe/Si(211) grown by molecular beam epitaxy. J Electron Mater. 1998;27(9):1047–52.

    Article  ADS  Google Scholar 

  44. Kroemer H. Nobel Lecture: QuaSielectric fields and band offsets: teaching electrons new tricks. Rev Mod Phys. 2001;73(3):783–93.

    Article  ADS  Google Scholar 

  45. Brill G, Chen Y, Dhar NK, et al. Nucleation of ZnTe/CdTe epitaxy on high-Miller-index Si surfaces. J Electron Mater. 2003;32(7):717–22.

    Article  ADS  Google Scholar 

  46. Berding MA, Sher A, Chen AB. Vacancy formation and extraction energies in semiconductor compounds and alloys. J Appl Phys. 1990;68(10):5064–77.

    Article  ADS  Google Scholar 

  47. Berding MA, van Schilfgaarde M, Sher A. First-principles calculation of native defect densities in Hg0.8Cd0.2Te. Phys Rev B. 1994;50(3):1519–34.

    Article  ADS  Google Scholar 

  48. Wei SH, Zhang SB. Chemical trends of defect formation and doping limit in II–VI semiconductors: the case of CdTe. Phys Rev B. 2002;66(15):155211(1–10).

    Google Scholar 

  49. Dornhaus R, Nimtz G, Schlicht B. Narrow-gap semiconductors: the properties and applications of the HgCdTe alloy system. Berlin Heidelberg: Springer; 1983.

    Google Scholar 

  50. Rogalski A, Adamiec K, Rutkowski J. Narrow-gap semiconductor photodiodes. Bellingham: SPIE Press;2000.

    Google Scholar 

  51. Wu Owen K, Kamath GS, Radford WA, et al. Chemical Doping of HgCdTe by Molecular-beam Epitaxy. J Vac Sci Technol A. 1990;8(2):1034–8.

    Article  ADS  Google Scholar 

  52. Jones CE, James K, Merz J, et al. Status of point defects in HgCdTe. J Vac Sci Technol A. 1985;3(1):131–7.

    Article  ADS  Google Scholar 

  53. Bubulac LO, Edwall DD, McConnell D, et al. P-on-n Arsenic-activated Junctions in MOCVD LWIR HgCdTe/GaAs. Semicond Sci Technol. 1990;5(3s):45–8.

    Article  ADS  Google Scholar 

  54. Skauli T, Steen H, Colin T, et al. Auger suppression in CdHgTe heterostructure diodes grown by molecular beam epitaxy using silver as acceptor dopant. Appl Phys Lett. 1996;68(9):1235–7.

    Article  ADS  Google Scholar 

  55. Giles NC, Lee Jaesun, Myers TH, et al. Optical properties of undoped and iodine doped CdTe. J Electron Mater. 1995;24(5):691–6.

    Article  ADS  Google Scholar 

  56. Vydyanath HR, Abbott RC, Nelson DA. Mode of incorporation of phosphorus in Hg0.8Cd0.2Te. J Appl Phys. 1983;54(3):1323–31.

    Article  ADS  Google Scholar 

  57. Berding MA, Sher A. Amphoteric behavior of arsenic in HgCdTe. Appl Phys Lett. 1999;74(5):685–7.

    Article  ADS  Google Scholar 

  58. McGill TC, Collins DA. Prospercts for the future of narrow bandgap materials. Semicond Sci Technol. 1993;8(1S):S1–5.

    Article  ADS  Google Scholar 

  59. Vydyanath HR, Ellsworth JA, Devaney CM. Electrical activity. Mode of incorporation and distribution coefficient of group V elements in Hg1-xCdxTe grown from tellurium rich liquid phase epitxial growth solutions. J Electron Mater. 1986;16(1):13–25.

    Article  ADS  Google Scholar 

  60. Vydyanath HR. Amphoteric behaviour of group V dopants in (Hg, Cd)Te. Semicond Sci Technol. 1990;5(3S):S213–6.

    Article  ADS  Google Scholar 

  61. Capper PA. Review of impurity behavior in bulk and epitaxial Hg1-xCdxTe. J Vac Sci Technol B. 1991;9(3):1667–81.

    Article  Google Scholar 

  62. Shi XH, Rujirawat S, Ashokan R, et al. Ionization energy of acceptors in As-doped HgCdTe grown by molecular beam epitaxy. Appl Phys Lett. 1998;73(5):638–40.

    Article  ADS  Google Scholar 

  63. Shin SH, Arias JM, Zandian M, et al. Enhanced arsenic diffusion and activation in HgCdTe. J Electron Mater. 1995;24(5):609–15.

    Article  ADS  Google Scholar 

  64. Dai N, Chang Y, Wang XG, et al. Photo-electronic phenomena in narrow gap Hg1-xCdxTe. Current Appl. Phys. 2002;2(5):365–71.

    Article  ADS  Google Scholar 

  65. Shin SH, Arias JM, Zandian M, et al. Annealing effect on the p-type carrier concentration in low temperature processed arsenic doped HgCdTe. J Electron Mater. 1993;22(8):1039–47.

    Article  ADS  Google Scholar 

  66. Zandian M, Chen AC, Edwall DD, et al. P-type arsenic doping of Hg1-xCdxTe by molecular beam epitaxy. Appl Phys Lett. 1997;71(19):2815–7.

    Article  ADS  Google Scholar 

  67. Berding MA, Sher A. Arsenic incorporation during MBE growth of HgCdTe. J Electron Mater. 1999;28(6):799–803.

    Article  ADS  Google Scholar 

  68. Berding MA, Sher A, Van Schilfgaarde M, et al. Modeling of arsenic activation in HgCdTe. J Electron Mater. 1998;27(6):605–9.

    Article  ADS  Google Scholar 

  69. Wijewarnasuriya PS, Sivananthan S. Arsenic incorporation in HgCdTe grown by molecular beam epitaxy. Appl Phys Lett. 1998;72(14):1694–6.

    Article  ADS  Google Scholar 

  70. Kohlera B, Wilkea S, Scheffler M, et al. Force calculation and atomic-structure optimization for the full-potential linearized augmented plane-wave code WIEN. Comp Phys Commun. 1996;94(1):31–48.

    Article  ADS  Google Scholar 

  71. Payne MC, Teter MP, Allan DC, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys. 1992;64(4):1045–97.

    Article  ADS  Google Scholar 

  72. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–8.

    Article  ADS  Google Scholar 

  73. Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45(23):13244–9.

    Article  ADS  Google Scholar 

  74. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–92.

    Article  ADS  MathSciNet  Google Scholar 

  75. Sun LZ, Chen XS, Sun YL, et al. Structural and electronic properties of the in Situ impurity AsHg in Hg0.5Cd0.5Te: first-principles study. Phys Rev B. 2005;71(19):193203.

    Article  ADS  Google Scholar 

  76. Kittel C. Introduction to solid state physics. New York: Wiley;1996.

    Google Scholar 

  77. Sturge MD. Solid state physics. In: Seitz F, Turnbull D, Ehrenreich H, editors. New York: Academic;1967. vol. 20, p. 91.

    Google Scholar 

  78. Dhar NK, Zandian M, Pasko JG, et al. Planar p-on-n HgCdTe heterostructure infrared photodiodes on Si substrates by molecular beam epitaxy. Appl Phys Lett. 1997;70(13):1730.

    Article  ADS  Google Scholar 

  79. Gorbach TY, Kuzma M, Smertenko PS et al. Anisotropically etched Si surface and the electrical properties of Si/HgCdTe heterostructures. Thin Solid Films 2003;428(1–2):165–169.

    Google Scholar 

  80. Sen P, Batra IP, Sivananthan S, et al. Electronic structure of Te- and As-covered Si(211). Phys Rev B. 2003;68(4):045314.

    Article  ADS  Google Scholar 

  81. Gupta BC, Batra IP, Sivananthan S. Growth of Te on As-exposed Si(211): electronic structure calculations. Phys Rev B. 2005;71(7):075328.

    Article  ADS  Google Scholar 

  82. Huang Y. Doctoral thesis. First principle research on GaAs and CdTe epitaxial on Si surface. Shanghai: Shanghai Institute of Technical Physics, CAS;2007.

    Google Scholar 

  83. Schi M, Harman TC. Optically pumped LPE-grown Hg1-xCdxTe laser. J Electron Mater. 1989;8:191–200.

    Google Scholar 

  84. Wijewarnasuriya PS, Sivananthan S. Arsenic incorporation in HgCdTe grown by molecular beam epitaxy. Appl Phys Lett. 1998;72(14):1694–7.

    Article  ADS  Google Scholar 

  85. Bevan MJ, Chen MC, Shih HD. High-quality p-type HgCdTe prepared by metalorganic chemical vapor depoSition. Appl Phys Lett. 1995;67(23):3450.

    Article  ADS  Google Scholar 

  86. Aqariden F, Wijewarnasuriya PS, Sivananthan S. Arsenic incorporation in HgCdTe grown by molecular beam epitaxy. J Vac Sci Technol B. 1998;16(3):1309–11.

    Article  Google Scholar 

  87. Selamet Y, Badano G, Grein CH, et al. Electrical activation and electrical properties of arsenic-doped Hg 1-xCdxTe epilayers grown by MBE. Proc SPIE. 2001;71:4454.

    Google Scholar 

  88. Aqariden F, Shih HD, Kinch MA, et al. Electrical properties of low-arsenic-doped HgCdTe grown by molecular beam epitaxy. Appl Phys Lett. 2001;78(22):3481–4.

    Article  ADS  Google Scholar 

  89. Berdinbg M, Sher A, Vanschilfgaarde M, et al. Modeling of arsenic activation in HgCdTe. J Electron Mater. 1998;27(6):605–9.

    Article  ADS  Google Scholar 

  90. Berding MA, Sher A. Amphoteric behavior of arsenic in HgCdTe. Appl Phys Lett. 1999;74(5):685–8.

    Article  ADS  Google Scholar 

  91. Wu J, Xu FF, Wu Y, Chen L, Yu MF, He L. P-type activation research of As-doping in MBE HgCdTe films. J Infrared Millim W. 2005;24(2):81–83.

    Google Scholar 

  92. Selamet Y, Grein CH, Lee TS, et al. Electrical properties of in Situ As doped Hg1–xCdxTe epilayers grown by molecular beam epitaxy. J Vac Sci Technol B. 2001;19(4):1488–91.

    Article  Google Scholar 

  93. Fangyu Y. Research on doped HgCdTe middle wavelength and long wavelength infrared luminescence and absorption spectrum. Shanghai: Shanghai Institute of Technical Physics, CAS; 2007.

    Google Scholar 

  94. Garland JW, Grein CH, Yang B, et al. Evidence that arsenic is incorporated as As4 molecules in the molecular beam epitaxial growth of HgCdTe:As. Appl Phys Lett. 1999;74(14):1975.

    Article  ADS  Google Scholar 

  95. Sun LZ, Chen XS, Zhao JJ, et al. Electronic properties and chemical trends of the arsenic in situ impurities in Hg1−xCdxTe: first-principles study. Phys Rev B. 2007;76(4):045219.

    Article  ADS  Google Scholar 

  96. Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45(23):13244.

    Article  ADS  Google Scholar 

  97. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892–5.

    Article  ADS  Google Scholar 

  98. Chen XJ, Hua XL, Hu JS, et al. Band structures of II–VI semiconductors using gaussian basis functions with separable ab initio pseudopotentials: application to prediction of band offsets. Phys Rev B. 1996;53(3):1377–87.

    Article  ADS  Google Scholar 

  99. Zhang SB, Northrup JE. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys Rev Lett. 1991;67(17):2339–42.

    Article  ADS  Google Scholar 

  100. Duan H, Chen XS, Huang Y, et al. Microscopic origin of electrical compensation in arsenic-doped HgCdTe by molecular beam epitaxy: density functional study. J Electron Mater. 2007;36(8):890–4.

    Article  ADS  Google Scholar 

  101. Hedberg K. Trans Am crystallogr Assoc. 1966;2:79.

    Google Scholar 

  102. Chang Y, Chu JH, Tang WG, et. al. Acta Phys Sincia. 1995;4–66.

    Google Scholar 

  103. Hunter AT, McGill TC. Luminescence from HgCdTe alloys. J Appl Phys. 1981;52(9):5779–86.

    Article  ADS  Google Scholar 

  104. Hunter AT, McGill TC. Luminescence studies of HgCdTe alloys. J Vac Sci Technol. 1982;21(1):205–7.

    Article  ADS  Google Scholar 

  105. Zandian M, Chen AC, Edwall DD, et al. p-type arsenic doping of Hg1−x Cd x Te by molecular beam epitaxy. Appl Phys Lett. 1997;71(19):2815–8.

    Article  ADS  Google Scholar 

  106. Berding MA, Vanschilfgaarde M, Sher A. Hg0.8Cd0.2Te native defects: densities and dopant properties. J Electron Mater. 1993;22(8):1005–10.

    Article  ADS  Google Scholar 

  107. Berding MA, Sher A. Amphoteric behavior of arsenic in HgCdTe. Appl Phys Lett. 1999;74(5):685–8.

    Article  ADS  Google Scholar 

  108. Garland JW, Grein CH, Yang B, et al. Evidence that arsenic is incorporated as As4 molecules in the molecular beam epitaxial growth of Hg1−x Cd x Te:As. Appl Phys Lett. 1999;74(14):1975.

    Article  ADS  Google Scholar 

  109. Grein CH, Garland JW, Sivananthan S, et al. Arsenic incorporation in MBE grown HgCdTe. J Electron Mater. 1999;28(6):789–92.

    Article  ADS  Google Scholar 

  110. Boieriu P, Grein CH, Jung HS, et al. Arsenic activation in molecular beam epitaxy grown, in situ doped HgCdTe(211). Appl Phys Lett. 2005;86(21):212106.

    Article  ADS  Google Scholar 

  111. Selamet Y, Grein CH, Lee TS, et al. Electrical properties of in situ As doped Hg1−x Cd x Te epilayers grown by molecular beam epitaxy. J Vac Sci Technol B. 2001;19(4):1488–91.

    Article  Google Scholar 

  112. Li X, Hu X, Zhao J, et al. Infrared Technology. 1997;2.

    Google Scholar 

  113. Li B, Gui YS, Chen ZH, et al. Study of impurity states in p-type Hg1−xCdxTe uSing far-infrared spectroscopy. Appl Phys Lett. 1998;73(11):1538–41.

    Article  ADS  Google Scholar 

  114. Cooper DE, Harrison WA. PosSible negative-U properties of the cation vacancy in HgCdTe. J Vac Sci Technol A. 1990;8(2):1112–5.

    Article  ADS  Google Scholar 

  115. Lander TJ, Morrsion J. Low voltage electron diffraction study of the oxidation and reduction of silicon. J Appl Phys. 1962;33(6):2089–92.

    Article  ADS  Google Scholar 

  116. Becker GE, Bean JC. Acceptor dopants in silicon molecular-beam epitaxy. J Appl Phys. 1977;48(8):3395–3399.

    Google Scholar 

  117. Shiraki Y, Katayama Y, et al. Molecular beam and solid-phase epitaxies of silicon under ultra-high vacuum. J Crystal Growth. 1978;45:287–91.

    Article  ADS  Google Scholar 

  118. Bean JC, Becker GE, et al. Dependence of residual damage on temperature during Ar+ sputter cleaning of silicon. J Appl Phys. 1977;48(3):907–13.

    Article  ADS  Google Scholar 

  119. Zehner DM, White CW, Ownby GW. Preparation of atomically clean silicon surfaces by pulsed laser irradiation. Appl Phys Lett. 1980;36(1):56–9.

    Article  ADS  Google Scholar 

  120. Wright S, Kroemer H. Reduction of oxides on silicon by heating in a gallium molecular beam at 800 °C. Appl Phys Lett. 1980;36(3):210–1.

    Article  ADS  Google Scholar 

  121. Ishizaka A, Shiraki Y. Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochemical Soc. 1986;133(4):666–71.

    Article  Google Scholar 

  122. Chen YP, Sivananthan S, Faurie JP. Structure of CdTe(111)B grown by MBE on misoriented Si(001). J Electron Mater. 1993;22(8):951–957.

    Google Scholar 

  123. Dhar NK, Boyd PR, et al. CdZnTe heteroepitaxy on 3’ (112) Si interface, surface and layer characteristics. J Electron Mater. 2000;29(6):748–53.

    Article  ADS  Google Scholar 

  124. Million A, Dhar NK, Dinan JH. Heteroepitaxy of CdTe on (211) Si substrates by molecular beam epitaxy. J Crystal Growth. 1996;159(1–4):76.

    Article  ADS  Google Scholar 

  125. Dhar NK, Goldsman N. Tellurium desorption kinetics from (112)Si:Si–Te binding energy. Phys Rev B. 2000;61(12):8256–61.

    Article  ADS  Google Scholar 

  126. Chadi DJ. Theoretical study of the atomic structure of Silicon(211), (111), (331) surfaces. Phys Rev B. 1984;29(2):785–92.

    Article  ADS  Google Scholar 

  127. Dhar NK, Wood CEC, et al. Heteroepitaxy of CdTe on {211} Si using crystallized amorphous ZnTe templates. J Vac Sci Technol B. 1996;14(3):2366–70.

    Google Scholar 

  128. Brill G, Chen Y, Dhar NK, et al. Nucleation of ZnTe/CdTe epitaxy on high-miller-index Si surface. J Electron Mater. 2003;32(7):717–22.

    Article  ADS  Google Scholar 

  129. Smith DJ, Tsec SCY, et al. Growth and characterization of CdTe/Si heterostructures-effect of substrate orientation. Mater Sci Eng B. 2000;77(1):93–100.

    Google Scholar 

  130. de Lyon TJ, Johnson SM, et al. Direct MBE growth of CdZnTe on Si(001) and Si(112) substrates for large-area HgCdTe IRFPAs. SPIE. 1993;2021:114–24.

    Google Scholar 

  131. Kawano M, Ajisawa A, Oda N. HgCdTe and CdTe(-1-1-3)B growth on Si(112) 5° off by MBE. Appl Phys Lett. 1996;69(19):2876–8.

    Article  ADS  Google Scholar 

  132. Chen YP, Sivananthan S, Faurie JP. Structure of CdTe(111)B grown by MBE on misoriented Si(001). J Electron Mater. 1993;22(8):951–7.

    Article  ADS  Google Scholar 

  133. He L, Wu Y, Chen L, et al. Composition control and surface defects of MBE-grown HgCdTe. J Cryst Growth. 2001;227–228:677–82.

    Article  Google Scholar 

  134. Bajaj J, Arias JM, Zandian M, et al. Uniform low defect density molecular beam epitaxial HgCdTe. J Electron Mater. 1996;25(8):1394–401.

    Article  ADS  Google Scholar 

  135. Ferret P, Zanatt JP, Hamelin R, et al. Status of the MBE technology at Leti LIR for the manufacturing of HgCdTe focal plane arrays. J Electron Mater. 2000;29(6):641–7.

    Article  ADS  Google Scholar 

  136. Brill G, Velicu S, Boieriu P, et al. MBE growth and device processing of MWIR HgCdTe on large area Si substrates. J. Electron Mater. 2001;30(6):717–22.

    Article  ADS  Google Scholar 

  137. Almeida LA, Dhar NK, Martinka M, et al. HgCdTe heteroepitaxy on three-inch (112) CdZnTe/Si: Ellipsometric control of substrate temperature. J Electron Mater. 2000;29(6):754–9.

    Article  ADS  Google Scholar 

  138. Chen L, Wu Y, He L, et al. Surface defects on MBE grown HgCdTe. J Infrared Millim W. 2001;20(6):406–10.

    Google Scholar 

  139. Deline VR, et al. A unified explanation for secondary ion yields. Appl Phys Lett. 1978;33(7):578–80.

    Article  ADS  Google Scholar 

  140. Wittmaack K. Implications in the use of reactive ion bombardment for secondary ion yield enhancement. Appl Surf Sci. 1981;9(1–4):315–34.

    Article  ADS  Google Scholar 

  141. Yu ML. Chemical enhancement effects in SIMS analysis. Nucl Instrum Methods Phys Res Sect B. 1986;15(1–6):151–8.

    Article  ADS  Google Scholar 

  142. Sheng J, Wang L, Lux GE. SIMS characterization of HgCdTe and related II–VI compounds. J Electron Mater. 1996;25(8):1165–71.

    Article  ADS  Google Scholar 

  143. He L, Wang SL, Yang JR, et al. MBE in situ high temperature annealing of HgCdTe. J Cryst Growth. 1999;201–202:524–9.

    Article  Google Scholar 

  144. Capper P. Narrow gap cadmium-based compounds. England: Short Run Press Ltd; 1994.

    Google Scholar 

  145. Boukerche M, Reno J, Sou IK, et al. Indium doping of HgCdTe layers during growth by molecular beam epitaxy. Appl Phys Lett. 1986;48(25):1733–5.

    Article  ADS  Google Scholar 

  146. Boukerche M, Sivananthan S, Wijewarnasuriya PS, et al. Electrical properties of intrinsic p-type shallow levels in HgCdTe grown by molecular-beam epitaxy in the (111)B orientation. J Vac Sci Technol A. 1989;7(2):311–3.

    Article  ADS  Google Scholar 

  147. Wu OK, Jamba DN, Kamath GS. Growth and properties of In- and As-doped HgCdTe by MBE. J Crystal Growth. 1993;127(1–4):365–70.

    Article  ADS  Google Scholar 

  148. Chen MC, Parker SG, Weirauch DF. Inhomogeneity model for anomalous hall effects in n-type Hg0.8Cd0.2Te Liquid-phase-epitaxy films. J Appl Phys. 1985;58(8):3150–3.

    Article  ADS  Google Scholar 

  149. Lou LF, Frye WH. Hall effect and resistivity in liquid-phase-epitaxial layers of HgCdTe. J Appl Phys. 1984;56(8):2253–67.

    Article  ADS  Google Scholar 

  150. Nimtz G, Bauer G, Dornhaus R, Mueller KH. Transient carrier decay and transport properties in Hg1-xCdxTe. Phys Rev B. 1974;10(8):3302–10.

    Article  ADS  Google Scholar 

  151. Sasaki T, Oda N, Kawano M, et al. Mercury annealing effect on the electrical properties of HgCdTe grown by molecular beam epitaxy. J Crystal Growth. 1992;117(1–4):222–6.

    Article  ADS  Google Scholar 

  152. Temofonte TA, Noreika AJ, Bevan MJ, et al. Low-level extrinsic doping for p- and n-type (100) HgCdTe grown by molecular-beam epitaxy. J Vac Sci Technol A. 1989;7(2):440–444.

    Google Scholar 

  153. Meyer JR, Bartoli FJ. Theory for electron mobilities in n-type HgCdTe and CdTe at low temperatures. J Vac Sci Technol. 1982;21(1):237–40.

    Article  ADS  Google Scholar 

  154. Rafol SB, Wijewarnasuriya PS, Sou IK, et al. Shubnikov-de Haas oscillations in as-grown and annealed molecular-beam-epitaxy-grown HgCdTe alloys doped with indium. J Appl Phys. 1993;73(1):216–25.

    Article  ADS  Google Scholar 

  155. Myers TH, Harris KA, Anka RW, et al. J Vac Sci Technol B. 1992;10:1438.

    Article  Google Scholar 

  156. Reine MB. Review of HgCdTe photodiodes for IR detection. Proc SPIE. 2000;4028:320.

    Article  ADS  Google Scholar 

  157. Rogalski A. Dual-band infrared detectors. Proc SPIE. 2000;3948:17.

    Article  ADS  Google Scholar 

  158. He L, Becker CR, Bicknell-Tassius RN, et al. Molecular beam epitaxial growth and evaluation of intrinsic and extrinsically doped Hg0.8Cd0.2Te on (100) Cd0. 96Zn0.04Te. J Appl Phys. 1993;73(7):3305–12.

    Article  ADS  Google Scholar 

  159. Wijewarnasuriya PS, Yoo SS, Sivananthan S, et al. P-type doping with arsenic in (211)B HgCdTe grown by MBE. J Electron Mater. 1996;25(8):1300–05.

    Google Scholar 

  160. Berding MA, et al. Modeling of arsenic activation in HgCdTe. J Electron Mater. 1998;27(6):605–9.

    Google Scholar 

  161. Grein CH, Garland JW, Sivananthan S, et al. Arsenic incorporation in MBE grown Hg1-xCdxTe. J Electron Mater 1999;28(6):789–792.

    Google Scholar 

  162. Lee TS, Garland J, Gren CH, et al. Correlation of arsenic incorporation and its electrical activation in MBE HgCdTe. J Electron Mater 2000;29(6):869–872.

    Google Scholar 

  163. Sivananthan S, Wijewarnasriya PS, Aqariden F. Mode of arsenic incorporation in HgCdTe grown by MBE. J Electron Mater 1997;26(6):621–24.

    Google Scholar 

  164. Chen AC, Zandian M, Edwall DD, et al. MBE growth and characterization of In situ arsenic doped HgCdTe. J Electron Mater. 1998;27(6):595–99.

    Google Scholar 

  165. Chand AD, Goodwin MW, Chen MC, et al. Variation of arsenic diffusion, coefficients in HgCdTe alloys with temperature and Hg pressure: tuning of p on n double layer heterojunction diode properties. J Electron Mater. 1995;24:599–8.

    Google Scholar 

  166. Boieriu P, Chen Y, Nathan V. Low-temperature activation of As in Hg1−xCdxTe(211) grown on Si by molecular beam epitaxy. J Electron Mater. 2002;37:694–8.

    Article  ADS  Google Scholar 

  167. Wu J. Doctoral thesis. Research on MBE HgCdTe P type As doping. Shanghai: Shanghai Institute of Technical Physics, CAS;2004.

    Google Scholar 

  168. Yoshikawa M. Dislocations in Hg1–xCdxTe/Cd1–zZnzTe epilayers grown by liquid-phase epitaxy. J Appl Physics. 1988;63(5):1533–40.

    Article  ADS  MathSciNet  Google Scholar 

  169. James TW, Stoller RE. Blocking of threading dislocations by Hg1–xCdxTe expitaxial layers. Appl Phys Lett. 1984;44(1):56–8.

    Article  ADS  Google Scholar 

  170. Wang CC, Shin SH, Chu M, Lanir M, Vanderwyck AHB. Liquid phase growth of HgCdTe epitaxial layers. J Electrochem Soc Solid-State Sci Technol. 1980;127(1):175–9.

    Google Scholar 

  171. Harman TC. Slider LPE of Hg1-xCdxTe using mercury pressure controlled growth solutions. J Electron Mater. 1981;10(6):1069–84.

    Article  ADS  Google Scholar 

  172. Chiang CD, Wu TB, Chung WC, Yang SJ, Pang YM. A new attachment for stable control of mercury pressure in the slider LPE of Hg1-xCdxTe. J Cryst Growth. 1988;87:161–8.

    Article  ADS  Google Scholar 

  173. Smith FT, et al. Te-rich liquid phase epitaxial growth of HgCdTe on Si-based substrates. J Electron Mater. 1995;24(9):1287–92.

    Article  ADS  Google Scholar 

  174. Xiuliang C. Research on HgCdTe epitaxial material defects characteristics. Semiconductor. 2006;27(8):1401–5.

    Google Scholar 

  175. Xiuliang C, Jianrong Y. Research on HgCdTe epitaxial material surface etching pits characteristics. Laser Infrared. 2005;35(11):845–8.

    Google Scholar 

  176. Smith FT, et al. Te-rich liquid phase epitaxial growth of HgCdTe on Si-based substrates. J Electron Mater. 1995;24(9):1287–92.

    Article  ADS  Google Scholar 

  177. Qingqing X, Xinqiang C, Yanfeng W, et al. HgCdTe LPE film prepared on (211) CdZnTe substrate. Laser Infrared. 2005;35(11):842–4.

    Google Scholar 

  178. Qingqing X, Xinqiang C, Yanfeng W, et al. Growth and properties analysis of HgCdTe LPE material on Si/CdTe composite substrate. Semiconductor. 2007;28(7):1078–82.

    Google Scholar 

  179. Meifang Y, Jianrong Y, Li H, et al. Research on MBE HgCdTe film dislocation density. Semiconductor. 1999;20(5):378.

    Google Scholar 

  180. Varesi JB, Bornfreund RE, Childs AC, et al. Fabrication of high-performance large-format MWIR focal plane arrays from MBE-grown HgCdTe on 4″ silicon substrates. J Electron Mater. 2001;30:566–73.

    Article  ADS  Google Scholar 

  181. Maranowski KD, Peterson JM, Johnson SM, et al. MBE growth of HgCdTe on silicon substrates for large format MWIR focal plane arrays. J Electron Mater. 2001;30:619–22.

    Article  ADS  Google Scholar 

  182. Jain SC, Maes HE, Pinardi K, De Wolf I. Stresses and strains in lattice-mismatched stripes, quantum wires, quantum dots, and substrates in Si technology. J Appl Phys. 1996;79:8145–65.

    Article  ADS  Google Scholar 

  183. Steegen A, Maex K. Silicide-induced stress in Si: origin and consequences for MOS technologies. Mater Sci Eng R. 2002;38:1–53.

    Article  Google Scholar 

  184. Carmody M, Lee D, Zandian M, Phillips J, et al. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers. J Electron Mater. 2003;32:710–6.

    Article  ADS  Google Scholar 

  185. Hu SM. Stress-related problem in silicon technology. J Appl Phys. 1991;70:53–80.

    Article  ADS  Google Scholar 

  186. Hwang D-MD. Strain relaxation in lattice-mismatched epitaxy. Mater Chem Phys. 1995;40:291–7.

    Article  Google Scholar 

  187. Pinardi K, Jain U, Jain SC, Maes HE, et al. Critical thickness and strain relaxation in lattice mismatched II–VI semiconductor layers. J Appl Phys. 1998;83:4724–33.

    Google Scholar 

  188. Allen PB, Cardona M. Theory of the temperature dependence of the direct gap of germanium. Phys Rev B. 1983;21:1495–505.

    Google Scholar 

  189. Allen PB, Cardona M. Temperature dependence of the direct gap of Si and Ge. Phys Rev B. 1983;27:4760–9.

    Article  ADS  Google Scholar 

  190. Amirtharaj PM, Pollak FH. Raman scattering study of the properties and removal of excess Te on CdTe surfaces. Appl Phys Lett. 1984;45:789–91.

    Article  ADS  Google Scholar 

  191. Sugo M, Uchida N, Yamamoto A, et al. Residual strains in heteroepitaxial III–V semiconductor films on Si(100) substrates. J Appl Phys. 1989;65:591–5.

    Article  ADS  Google Scholar 

  192. Thomas DG. Excitons and band splitting produced by uniaxial stress in CdTe. J Appl Phys. 1961;32:2298–304.

    Article  ADS  Google Scholar 

  193. Feng Z, Liu H. Generalized formula for curvature radius and layer stresses caused by thermal strain in semiconductor multilayer structures. J Appl Phys. 1983;54:83–5.

    Article  ADS  Google Scholar 

  194. People R, Bean JC. Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures. Appl Phys Lett. 1985;47:322–4.

    Article  ADS  Google Scholar 

  195. Nishino H, Sugiyama I, Nishijima Y. Misfit stress relaxation mechanism in CdTe(100) and CdTe/ZnTe(100) on a GaAs(100) highly mismatched heteroepitaxial layer. J Appl Phys. 1996;80:3238–43.

    Article  ADS  Google Scholar 

  196. Payne AP, Lairson BM, Clemens BM. Strain relaxation in ultrathin films: a modified theory of misfit-dislocation energetics. Phys Rev B. 1993;47:13730–6.

    Article  ADS  Google Scholar 

  197. Huang FY. Theory of strain relaxation for epitaxial layers grown on substrate of a finite dimension. Phys Rev Lett. 2000;85:784–7.

    Article  ADS  Google Scholar 

  198. Wiesauer K, Springholz G. Critical thickness and strain relaxation in high-misfit heteroepitaxial systems: PbTe1-xSex on PbSe (001). Phys Rev B. 2004;69:245313.

    Article  ADS  Google Scholar 

  199. Olsen GH, Ettenberg M. Calculated stresses in multilayered heteroepitaxial structures. J Appl Phys. 1977;48:2453–7.

    Article  Google Scholar 

  200. Nakajima K. Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures. J Appl Phys. 1992;72:5213–9.

    Article  ADS  Google Scholar 

  201. Suhir E. Predicted thermally induced stresses in, and the bow of, a circular substrate/thin-film structure. J Appl Phys. 2000;88:2363–70.

    Article  ADS  Google Scholar 

  202. Hsueh C-H. Modeling of elastic deformation of multilayers due to residual stresses and external bending. J Appl Phys. 2002;91:9652–6.

    Article  ADS  Google Scholar 

  203. Malzbender J. Mechanical and thermal stresses in multilayered materials. J Appl Phys. 2004;95:1780–2.

    Article  ADS  Google Scholar 

  204. Hu YY, Huang WM. Elastic and elastic-plastic analysis of multilayer thin films: closed-form solutions. J Appl Phys. 2004;96:4154–60.

    Article  ADS  Google Scholar 

  205. Zhang Y, Zhao Y. Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer. J Appl Phys. 2006;99:053513.

    Article  ADS  Google Scholar 

  206. Yonenaga I, et al. Yield strength and dislocation mobility in plastically deformed ZnSe. Phys B. 2006;376–377:771–4.

    Article  Google Scholar 

  207. Weertman J. Zener–Stroh crack, Zener–Hollomon parameter, and other topics. J Appl Phys. 1986;60:1877–87.

    Article  ADS  Google Scholar 

  208. Suo Z. Cracking and debonding of microlaminates. J Vac Sci Technol A. 1993;11:1367–72.

    Article  ADS  Google Scholar 

  209. Liu XH, Suo Z, Ma Q, Fujimoto H. Developin design rules to avert cracking and debonding in the integrated circuit structures. Eng Fract Mechnan. 2000;66:387–402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li He .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 National Defense Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, L., Yang, D., Ni, G. (2016). CdTe/Si Composite Substrate and HgCdTe Epitaxy. In: Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52718-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52718-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52716-0

  • Online ISBN: 978-3-662-52718-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics