Skip to main content

New Developments and Decision-makings in Production and Retailing

  • Chapter
  • First Online:
  • 1047 Accesses

Abstract

This chapter introduces firstly the new developments in production and retail operations. These developments bring new challenges to daily operations and decision-makings because some new decision-making problems and problem features emerge and have to be handled. This chapter then reviews previous studies on decision-making problems in production and retailing, including production planning, production scheduling, assembly line balancing, and sales forecasting. Finally, this chapter reviews commonly used techniques for typical decision-making problems, including production optimization and sales forecasting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The two terms ‘production’ and ‘manufacturing’ are considered synonyms in this chapter and are used as replacements for each other.

References

  • Abdulrazaq, T., Potts, C., & Vanwassenhove, L. (1990). A survey of algorithms for the single-machine total weighted tardiness scheduling problem. Discrete Applied Mathematics, 26(2–3), 235–253.

    Article  MathSciNet  Google Scholar 

  • Adibi, M. A. A., Shahrabi, J., & Shahrabi, J. (2014). A clustering-based modified variable neighborhood search algorithm for a dynamic job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 70(9–12), 1955–1961.

    Article  Google Scholar 

  • Adiri, I., & Aizikowitz, N. (1989). Open-shop scheduling problems with dominated machines. Naval Research Logistics, 36(3), 273–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Turki, U., Fedjki, C., & Andijani, A. (2001). Tabu search for a class of single-machine scheduling problems. Computers & Operations Research, 28(12), 1223–1230.

    Article  MathSciNet  MATH  Google Scholar 

  • Amen, M. (2000). Heuristic methods for cost-oriented assembly line balancing: A survey. International Journal of Production Economics, 68(1), 1–14.

    Article  Google Scholar 

  • Anderson, E. J., & Ferris, M. C. (1994). Genetic algorithms for combinatorial optimization: The assembly line balancing problem. ORSA Journal on Computing, 6(2), 161–173.

    Article  MATH  Google Scholar 

  • Andrew, W., Cranage, D., & Lee, C. (1990). Forecasting hotel occupancy rates with time series models: An empirical analysis. Hospitality Research Journal, 14(2), 173–181.

    Google Scholar 

  • Arcus, A. L. (1966). COMSOAL: A computer method of sequencing operations for assembly lines. International Journal of Production Research, 4(4), 259–277.

    Article  Google Scholar 

  • Au, K., Choi, T., & Yu, Y. (2008). Fashion retail forecasting by evolutionary neural networks. International Journal of Production Economics, 114(2), 615–630.

    Article  Google Scholar 

  • Balasubramanian, J., & Grossmann, I. (2002). A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times. Computers & Chemical Engineering, 26(1), 41–57.

    Article  Google Scholar 

  • Barnes, J. W., & Chambers, J. B. (1995). Solving the job-shop scheduling problem with tabu search. IIE Transactions, 27(2), 257–263.

    Article  Google Scholar 

  • Bautista, J., & Pereira, J. (2007). Ant algorithms for a time and space constrained assembly line balancing problem. European Journal of Operational Research, 177(3), 2016–2032.

    Article  MATH  Google Scholar 

  • Baybars, I. (1986). A Survey of exact algorithms for the simple assembly line balancing problem. Management Science, 32(8), 909–932.

    Article  MathSciNet  MATH  Google Scholar 

  • Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research, 168(3), 694–715.

    Article  MathSciNet  MATH  Google Scholar 

  • Biskup, D. (1999). Single-machine scheduling with learning considerations. European Journal of Operational Research, 115(1), 173–178.

    Article  MathSciNet  MATH  Google Scholar 

  • Blazewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem: Conventional and new solution techniques. European Journal of Operational Research, 93(1), 1–33.

    Article  MATH  Google Scholar 

  • Boryczka, U. (2004). Ant colony system for JSP. Lecture Notes in Computer Science, 3305, 296–305.

    Article  MATH  Google Scholar 

  • Boulden, J. B. (1958). Fitting the sales forecast to your firm. Business Horizons, 1(1), 65–72.

    Article  Google Scholar 

  • Bushuev, M. (2014). Convex optimisation for aggregate production planning. International Journal of Production Research, 52(4), 1050–1058.

    Article  Google Scholar 

  • Caridi, M., & Sianesi, A. (2000). Multi-agent systems in production planning and control: An application to the scheduling of mixed-model assembly lines. International Journal of Production Economics, 68(1), 29–42.

    Article  Google Scholar 

  • Carson, J. S. I. (2003). Introduction to simulation: Introduction to modeling and simulation. In: Proceedings of the 2003 Winter Simulation Conference, New Orleans, Louisiana, USA.

    Google Scholar 

  • Celano, G., Fichera, S., Grasso, V., La Commare, U., & Perrone, G. (1999). An evolutionary approach to multi-objective scheduling of mixed model assembly lines. Computers & Industrial Engineering, 37(1–2), 69–73.

    Article  Google Scholar 

  • Chakravarthy, S. (1986). A single-machine scheduling problem with random processing times. Naval Research Logistics, 33(3), 391–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, F., & Chan, H. (2004). A comprehensive survey and future trend of simulation study on FMS scheduling. Journal of Intelligent Manufacturing, 15(1), 87–102.

    Article  Google Scholar 

  • Chan, F., Chan, H., & Lau, H. (2002). The state of the art in simulation study on FMS scheduling: A comprehensive survey. International Journal of Advanced Manufacturing Technology, 19(11), 830–849.

    Article  Google Scholar 

  • Chang, P., Wang, Y., & Liu, C. (2005). Fuzzy back-propagation network for PCB sales forecasting. In: Proceedings of Advances in Natural Computation PT 1, 3610: 364–373.

    Google Scholar 

  • Chaudhry, S., & Luo, W. (2005). Application of genetic algorithms in production and operations management: A review. International Journal of Production Research, 43(19), 4083–4101.

    Article  MATH  Google Scholar 

  • Chen, F. L., & Ou, T. Y. (2009). Gray relation analysis and multilayer functional link network sales forecasting model for perishable food in convenience store. Expert Systems with Applications, 36(3), 7054–7063.

    Article  Google Scholar 

  • Chen, R., & Huang, Y. (2001). Competitive neural network to solve scheduling problems. Neurocomputing, 37, 177–196.

    Article  MATH  Google Scholar 

  • Chen, Z. (1996). Parallel machine scheduling with time dependent processing times. Discrete Applied Mathematics, 70(1), 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Z., & Pundoor, G. (2006). Order assignment and scheduling in a supply chain. Operations Research, 54(3), 555–572.

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job-shop scheduling problems using genetic algorithms.1. Representation. Computers & Industrial Engineering, 30(4), 983–997.

    Article  Google Scholar 

  • Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial survey of job-shop scheduling problems using genetic algorithms: Part II. Hybrid genetic search strategies. Computers & Industrial Engineering, 37(1–2), 51–55.

    Article  Google Scholar 

  • Cheng, T. C. E., & Sin, C. C. S. (1990). A State-of-art review of parallel-machine scheduling research. European Journal of Operational Research, 47(3), 271–292.

    Article  MathSciNet  MATH  Google Scholar 

  • Choi, J., Realff, M., & Lee, J. (2004). Dynamic programming in a heuristically confined state space: A stochastic resource-constrained project scheduling application. Computers & Chemical Engineering, 28(6–7), 1039–1058.

    Article  Google Scholar 

  • Chong, S. C., Sivakumar, A. I., & Gay, R. K. L. (2003). Simulation-based scheduling for dynamic discrete manufacturing. In: Proceedings of the 2003 Winter Simulation Conference, New Orleans, Louisiana, USA.

    Google Scholar 

  • Coello, C., Rivera, D., & Cortes, N. (2003). Use of an artificial immune system for job shop scheduling. Artificial Immune Systems, Proceedings, 2787, 1–10.

    Article  Google Scholar 

  • Conterno, R., Allasia, A., & Proverbio, A. (1991). A queuing network branch-and-bound approach to lot scheduling in flexible manufacturing systems. Information and Decision Technologies, 17(1), 1–21.

    MathSciNet  MATH  Google Scholar 

  • Crauwels, H., Potts, C., Van Oudheusden, D., & Van Wassenhove, L. (2005). Branch and bound algorithms for single machine scheduling with batching to minimize the number of late jobs. Journal of Scheduling, 8(2), 161–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Danese, P., & Kalchschmidt, M. (2011). The impact of forecasting on companies’ performance: Analysis in a multivariate setting. International Journal of Production Economics, 133(1), 458–469.

    Article  Google Scholar 

  • Darel, E., & Karni, R. (1980). A Hybrid algorithm for independent task parallel machine scheduling. OMEGA-International Journal of Management Science, 8(2), 239–242.

    Article  Google Scholar 

  • De Gooijer, J., & Hyndman, R. (2006). 25 years of time series forecasting. International Journal of Forecasting, 22(3), 443–473.

    Article  Google Scholar 

  • deWerra, D., Hoffman, A., Mahadev, N., & Peled, U. (1996). Restrictions and preassignments in preemptive open shop scheduling. Discrete Applied Mathematics, 68(1–2), 169–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Dolgui, A., & Prodhon, C. (2007). Supply planning under uncertainties in MRP environments: A state of the art. Annual Reviews In Control, 31(2), 269–279.

    Article  Google Scholar 

  • Drexl, A., & Kimms, A. (2013). Beyond manufacturing resource planning (MRP II): Advanced models and methods for production planning. Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Drobouchevitch, I., & Strusevich, V. (2001). Two-stage open shop scheduling with a bottleneck machine. European Journal of Operational Research, 128(1), 159–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Ehie, I., & Madsen, M. (2005). Identifying critical issues in enterprise resource planning (ERP) implementation. Computers in Industry, 56(6), 545–557.

    Article  Google Scholar 

  • Eilon, S., & Hodgson, R. M. (1967). Job shop scheduling with due-dates. International Journal of Production Research, 6, 1–13.

    Article  Google Scholar 

  • Erel, E., & Sarin, S. (1998). A survey of the assembly line balancing procedures. Production Planning & Control, 9(5), 414–434.

    Article  Google Scholar 

  • Feng, S., Li, L., Cen, L., & Huang, J. (2003). Using MLP networks to design a production scheduling system. Computers & Operations Research, 30(6), 821–832.

    Article  MATH  Google Scholar 

  • Foster, B., & Ryan, D. (1976). Integer programming approach to vehicle scheduling problem. Operational Research Quarterly, 27(2), 367–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Gamberini, R., Grassi, A., & Rimini, B. (2006). A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. International Journal of Production Economics, 102(2), 226–243.

    Article  Google Scholar 

  • Gardner, E. (2006). Exponential smoothing: The state of the art—Part II. International Journal of Forecasting, 22(4), 637–666.

    Article  Google Scholar 

  • Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature-review and analysis of the design, balancing and scheduling of assembly systems. International Journal of Production Research, 27(4), 637–670.

    Article  Google Scholar 

  • Gokcen, H., & Agpak, K. (2006). A goal programming approach to simple U-line balancing problem. European Journal of Operational Research, 171(2), 577–585.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of the ACM, 23(4), 665–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Graves, S. C., & Lamar, B. W. (1983). An integer programming procedure for assembly system design problems. Operations Research, 31(3), 522–545.

    Article  MATH  Google Scholar 

  • Guerriero, F., & Miltenburg, J. (2003). The stochastic U-Line balancing problem. Naval Research Logistics, 50(1), 31–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Guinet, A. (2001). Multi-site planning: A transshipment problem. International Journal of Production Economics, 74(1–3), 21–32.

    Article  Google Scholar 

  • Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., & Chan, S. F. (2007). A genetic algorithm based optimization model for solving the flexible assembly line balancing problem with work-sharing and workstation revisiting. In: Proceedings of IEEE Transactions on Systems Man and Cybernetics Part C—Applications and Reviews.

    Google Scholar 

  • Guo, Z. X., Wong, W. K., & Li, M. (2013). A multivariate intelligent decision-making model for retail sales forecasting. Decision Support Systems, 55(1), 247–255.

    Article  Google Scholar 

  • Gupta, J. (1971). Improved combinatorial algorithm for flowshop—Scheduling problem. Operations Research, 19(7), 1753–1758.

    Article  MATH  Google Scholar 

  • Gupta, J., & Stafford, E. (2006). Flowshop scheduling research after five decades. European Journal of Operational Research, 169(3), 699–711.

    Article  MATH  Google Scholar 

  • Gupta, Y., Evans, G., & Gupta, M. (1991). A review of multi-criterion approaches to FMS scheduling problems. International Journal of Production Economics, 22(1), 13–31.

    Article  Google Scholar 

  • Gupta, Y., Gupta, M., & Bector, C. (1989). A review of scheduling rules in flexible manufacturing systems. International Journal of Computer Integrated Manufacturing, 2(6), 356–377.

    Article  MathSciNet  Google Scholar 

  • Gutjahr, A. L., & Nemhauser, G. L. (1964). An algorithm for the line balancing problem. Management Science 11(2).

    Google Scholar 

  • Hadavandi, E., Shavandi, H., & Ghanbari, A. (2011). An improved sales forecasting approach by the integration of genetic fuzzy systems and data clustering: Case study of printed circuit board. Expert Systems with Applications, 38(8), 9392–9399.

    Article  Google Scholar 

  • Harmonosky, C. (1995). Simulation-based real-time scheduling: Review of recent developments. In: Proceedings of the 1995 Winter Simulation Conference, Arlington, VA, USA.

    Google Scholar 

  • Harmonosky, C., & Robohn, S. (1991). Real-time scheduling in computer integrated manufacturing—A review of recent research. International Journal of Computer Integrated Manufacturing, 4(6), 331–340.

    Article  Google Scholar 

  • Hart, E., Ross, P., & Corne, D. (2005). Evolutionary scheduling: A review. Genetic Programming and Evolvable Machines, 6, 191–220.

    Article  Google Scholar 

  • Haupt, R. (1989). A survey of priority rule-based scheduling. OR Specktrum, 11(1), 3–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Hejazi, S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion: A review. International Journal of Production Research, 43(14), 2895–2929.

    Article  MATH  Google Scholar 

  • Helgeson, W. B., & Birnie, D. P. (1961). Assembly line balancing using the ranked positional weight technique. Journal of Industrial Engineering, 12(6), 394–398.

    Google Scholar 

  • Hollocks, B. (1995). The impact of simulation in manufacturing decision-making. Control Engineering Practice, 3(1), 105–112.

    Article  Google Scholar 

  • Holloway, C., & Nelson, R. (1974). Job shop scheduling with due dates and overtime capability. Management Science Series A—Theory, 21(1), 68–78.

    MATH  Google Scholar 

  • Hunsucker, J., & Shah, J. (1992). Performance of priority rules in a due date flow-shop. OMEGA-International Journal of Management Science, 20(1), 73–89.

    Article  Google Scholar 

  • Hwang, T., & Chang, S. (2003). Design of a Lagrangian relaxation-based hierarchical production scheduling environment for semiconductor wafer fabrication. IEEE Transactions on Robotics and Automation, 19(4), 566–578.

    Article  MathSciNet  Google Scholar 

  • Ibraki, T., & Nakamura, Y. (1994). A dynamic-programming method for single-machine scheduling. European Journal of Operational Research, 76(1), 72–82.

    Article  Google Scholar 

  • Jain, A., & Meeran, S. (1998). Job-shop scheduling using neural networks. International Journal of Production Research, 36(5), 1249–1272.

    Article  MATH  Google Scholar 

  • Jain, A., & Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and future. European Journal of Operational Research, 113(2), 390–434.

    Article  MATH  Google Scholar 

  • Jain, N., Bagchi, T., & Wagneur, E. (2000). Flowshop scheduling by hybridized GA: Some new results. International Journal of Industrial Engineering-Theory Applications and Practice, 7(3), 213–223.

    Google Scholar 

  • Jamalnia, A., & Soukhakian, M. (2009). A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning. Computers & Industrial Engineering, 56(4), 1474–1486.

    Article  Google Scholar 

  • Jing, C., Zhang Q., & Sun, H. (2010). Integrative Model of Airline Demands Forecast Based on Period-Decoupled Booking Data. In: Proceedings of EBM 2010: International Conference on Engineering and Business Management, 1(8), 5587–5591.

    Google Scholar 

  • Jozefwska, J., & Zimniak, A. (2008). Optimization tool for short-term production planning and scheduling. International Journal of Production Economics, 112(1), 109–120.

    Article  Google Scholar 

  • Kaufman, M. (1974). Almost optimal algorithm for assembly line scheduling problem. IEEE Transactions on Computers C, 23(11), 1169–1174.

    Article  MathSciNet  MATH  Google Scholar 

  • Khowala, K., Fowler, J., Keha, A., & Balasubramania, H. (2014). Single machine scheduling with interfering job sets. Computers & Operations Research, 45, 97–107.

    Article  MathSciNet  Google Scholar 

  • Kilincci, O., & Bayhan, G. M. (2006). A Petri net approach for simple assembly line balancing problems. The International Journal of Advanced Manufacturing Technology, 30(11–12), 1165–1173.

    Article  Google Scholar 

  • Kiran, A., & Smith, M. (1984). Simulation studies in job shop scheduling. 1. A survey. Computers & Industrial Engineering, 8(2), 87–93.

    Article  Google Scholar 

  • Klein, R., & Scholl, A. (1996). Maximizing the production rate in simple assembly line balancing—A branch and bound procedure. European Journal of Operational Research, 91(2), 367–385.

    Article  MATH  Google Scholar 

  • Kottas, J., & Lau, H. (1981). A Stochastic Line Balancing Procedure. International Journal of Production Research, 19(2), 177–193.

    Article  Google Scholar 

  • Kottas, J. F., & Lau, H. S. (1973). A cost-oriented approach to stochastic line balancing. AIIE Transactions, 5(2), 164–171.

    Article  Google Scholar 

  • Koulamas, C., & Kyparisis, G. (2007). Single-machine and two-machine flowshop scheduling with general learning functions. European Journal of Operational Research, 178(2), 402–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Kulendran, N., & Wong, K. (2011). Determinants versus Composite Leading Indicators in Predicting Turning Points in Growth Cycle. Journal of Travel Research, 50(4), 417–430.

    Article  Google Scholar 

  • Kuo, R. (2001). A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm. European Journal of Operational Research, 129(3), 496–517.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuroda, M., & Wang, Z. (1996). Fuzzy job shop scheduling. International Journal of Production Economics, 44(1–2), 45–51.

    Article  Google Scholar 

  • Kyparisis, G., & Koulamas, C. (2002). Assembly-line scheduling with concurrent operations and parallel machines. Informs Journal on Computing, 14(1), 68–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster, G., & Reynolds, P. (2002). Marketing: Made simple. Oxford: UK Elsevier.

    Google Scholar 

  • Lauff, V., & Werner, F. (2004). On the complexity and some properties of multi-stage scheduling problems with earliness and tardiness penalties. Computers & Operations Research, 31(3), 317–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Le, V., Gunn, B., & Nahavandi, S. (2004). MRP-production planning in agile manufacturing. In: Proceedings of 2nd International IEEE Conference on Intelligent Systems.

    Google Scholar 

  • Lee, W., Steinberg, E., & Khumawala, B. (1983). Aggregate versus disaggerate production planning—A simulated experiment using LDR and MRP. International Journal of Production Research, 21(6), 797–811.

    Article  Google Scholar 

  • Leung, J., Li, H., & Pinedo, M. (2005). Order scheduling in an environment with dedicated resources in parallel. Journal of Scheduling, 8(5), 355–386.

    Article  MathSciNet  MATH  Google Scholar 

  • Leung, S., Tsang, S., Ng, W., & Wu, Y. (2007). A robust optimization model for multi-site production planning problem in an uncertain environment. European Journal of Operational Research, 181(1), 224–238.

    Article  MATH  Google Scholar 

  • Li, Y., Man, K., Tang, K., Kwong, S., & Ip, W. (2000). Genetic algorithm to production planning and scheduling problems for manufacturing systems. Production Planning & Control, 11(5), 443–458.

    Article  Google Scholar 

  • Liao, C., Sun, C., & You, W. (1995). Flowshop scheduling with flexible processors. Computers & Operations Research, 22(3), 297–306.

    Article  MATH  Google Scholar 

  • Liaw, C. (2003). An efficient tabu search approach for the two-machine preemptive open shop scheduling problem. Computers & Operations Research, 30(14), 2081–2095.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, K. (2006). Dynamic pricing with real-time demand learning. European Journal of Operational Research, 174(1), 522–538.

    Article  MATH  Google Scholar 

  • Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: A survey. Computers & Industrial Engineering, 37(1–2), 57–61.

    Article  Google Scholar 

  • Liu, M., Hao, J., & Wu, C. (2006). A new genetic algorithm for parallel machine scheduling problems with procedure constraints and its applications. Chinese Journal of Electronics, 15(3), 463–466.

    Google Scholar 

  • Liu, S., Ong, H., & Ng, K. (2005). A fast tabu search algorithm for the group shop scheduling problem. Advances in Engineering Software, 36(8), 533–539.

    Article  MATH  Google Scholar 

  • Lorigeon, T., Billaut, J., & Bouquard, J. (2002). A dynamic programming algorithm for scheduling jobs in a two-machine open shop with an availability constraint. Journal of the Operational Research Society, 53(11), 1239–1246.

    Article  MATH  Google Scholar 

  • Makridakis, S., Wheelwright, S., & Hyndman, R. (1998). Forecasting: Methods and Applications. New York: Wiley.

    Google Scholar 

  • Metaxiotis, K., Askounis, D., & Psarras, J. (2002). Expert systems in production planning and scheduling: A state-of-the-art survey. Journal of Intelligent Manufacturing, 13(4), 253–260.

    Article  Google Scholar 

  • Metaxiotis, K., & Psarras, J. (2003). Neural networks in production scheduling: Intelligent solutions and future promises. Applied Artificial Intelligence, 17(4), 361–373.

    Article  Google Scholar 

  • Miller, J., Thompson, P., & Orabella, M. (1991). Forecasting in Foodservice-Model Development, Testing, and Evaluation. Journal of the American Dietetic Association, 91(5), 569–574.

    Google Scholar 

  • Mokotoff, E. (2001). Parallel machine scheduling problems: A survey. Asia-Pacific Journal of Operational Research, 18(2), 193–242.

    MathSciNet  MATH  Google Scholar 

  • Moodie, C. L., & Young, H. H. (1965). A heuristic method of assembly line balancing for assumptions of constant or variable work element times. Journal of Industrial Engineering, 16(1), 23–29.

    Google Scholar 

  • Mosheiov, G. (2001). Parallel machine scheduling with a learning effect. Journal of the Operational Research Society, 52(10), 1165–1169.

    Article  MATH  Google Scholar 

  • Mula, J., Peidro, D., Diaz-Madronero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Narahari, Y., & Srigopal, R. (1996). Real-world extensions to scheduling algorithms based on Lagrangian relaxation. Sadhana-Academy Proceedings in Engineering Sciences, 21, 415–433.

    MathSciNet  MATH  Google Scholar 

  • Neumann, K., & Schneider, W. (1999). Heuristic algorithms for job-shop scheduling problems with stochastic precedence constraints. Annals of Operations Research, 92, 45–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Nkasu, M., & Leung, K. (1995). A Stochastic Approach to Assmelby-line Balancing. International Journal of Production Research, 33(4), 975–991.

    Article  MATH  Google Scholar 

  • Oberhausen, P., & Koppelman, F. (1982). Time-series analysis of intercity air travel volume. Transportation Research Record, 840, 15–21.

    Google Scholar 

  • Oh, K. H. (1997). Expert line balancing system (ELBS). Computers & Industrial Engineering, 33(1–2), 303–306.

    Article  Google Scholar 

  • Okeefe, R., & Kasirajan, T. (1992). Interaction between dispatching and next station selection-rules in a dedicated flexible manufacturing system. International Journal of Production Research, 30(8), 1753–1772.

    Article  Google Scholar 

  • Pan, C. (1997). A study of integer programming formulations for scheduling problems. International Journal of Systems Science, 28(1), 33–41.

    Article  MATH  Google Scholar 

  • Park, L., & Park, C. (1995). Genetic algorithm for job-shop scheduling problems based on 2 representational schemes. Electronics Letters, 31(23), 2051–2053.

    Article  Google Scholar 

  • Park, Y., Pegden, C., & Enscore, E. (1984). A survey and evaluation of static flowshop scheduling heuristics. International Journal of Production Research, 22(1), 127–141.

    Article  MATH  Google Scholar 

  • Parush, A., Hod, A., & Shtub, A. (2007). Impact of visualization type and contextual factors on performance with enterprise resource planning systems. Computers & Industrial Engineering, 52(1), 133–142.

    Article  Google Scholar 

  • Peng, J., & Liu, B. (2004). Parallel machine scheduling models with fuzzy processing times. Information Sciences, 166(1–4), 49–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Ponnambalam, S., Aravindan, P., & Rajesh, S. (2000). A tabu search algorithm for job shop scheduling. International Journal of Advanced Manufacturing Technology, 16(10), 765–771.

    Article  Google Scholar 

  • Ponnambalam, S., Jawahar, N., & Aravindan, P. (1999). A simulated annealing algorithm for job shop scheduling. Production Planning & Control, 10(8), 767–777.

    Article  Google Scholar 

  • Priore, P., De La Fuente, D., Gomez, A., & Puente, J. (2001). A review of machine learning in dynamic scheduling of flexible manufacturing systems. AI EDAM-Artificial Intelligence for Engineering Design Analysis and Manufacturing, 15(3), 251–263.

    Article  MATH  Google Scholar 

  • Puente, J., Diez, H., Varela, R., Vela, C., & Hidalgo, L. (2003). Heuristic rules and genetic algorithms for open shop scheduling problem. Current Topics in Artificial Intelligence, 3040, 394–403.

    Article  Google Scholar 

  • Rachamadugu, R., & Stecke, K. (1994). Classification and review of FMS scheduling procedures. Production Planning & Control, 5(1), 2–20.

    Article  Google Scholar 

  • Ramasesh, R. (1990). Dynamic job shop scheduling - A survey of simulation research. OMEGA-International Journal of Management Science, 18(1), 43–57.

    Article  Google Scholar 

  • Reeve, N., & Thomas, W. (1973). Balancing stochastic assembly lines. AIIE Transactions, 5(3), 223–229.

    Article  Google Scholar 

  • Rogers, P., & Gordon R. J. (1993). Simulation for real-time decision making in manufacturing systems. In: Proceedings of the 1993 Winter Simulation Conference, Los Angeles, USA.

    Google Scholar 

  • Roman, R. (1971). Mine-mill production scheduling by dynamic programming. Operational Research Quarterly, 22(4), 319–328.

    Article  Google Scholar 

  • Saab, S., & Zouein, P. (2001). Forecasting passenger load for a fixed planning horizon. Journal of Air Transport Management, 7(6), 361–372.

    Article  Google Scholar 

  • Sahin, F., Robinson, E., & Gao, L. (2008). Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain. International Journal of Production Economics, 115(2), 528–541.

    Article  Google Scholar 

  • Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6(3), 18–25.

    MathSciNet  Google Scholar 

  • Sarin, S., & Chen, C. (1987). The machine loading and tool allocation problem in a flexible manufacturing system. International Journal of Production Research, 25(7), 1081–1094.

    Article  Google Scholar 

  • Sawik, T. (2002). Monolithic vs. hierarchical balancing and scheduling of a flexible assembly line. European Journal of Operational Research, 143(1), 115–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Sawik, T. (2004). Loading and scheduling of a flexible assembly system by mixed integer programming. European Journal of Operational Research, 154(1), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Sawyer, P. (1990). Planning and controlling production with MRP-II. Chemical Engineer—London(470): 32–34.

    Google Scholar 

  • Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168(3), 666–693.

    Article  MathSciNet  MATH  Google Scholar 

  • Sellers, D. W. (1996). A survey of approaches to the job shop scheduling problem. In: Proceedings of the 28th Southeastern Symposium on System Theory, Baton Rouge, LA.

    Google Scholar 

  • Senthilkumar, P., & Shahabudeen, P. (2006). GA based heuristic for the open job shop scheduling problem. International Journal of Advanced Manufacturing Technology, 30(3–4), 297–301.

    Article  Google Scholar 

  • Shakhlevich, N., Sotskov, Y., & Werner, F. (2000). Complexity of mixed shop scheduling problems: A survey. European Journal of Operational Research, 120(2), 343–351.

    Article  MathSciNet  MATH  Google Scholar 

  • Siegel, T. (1974). Graphical branch-and-bound algorithm for job-shop scheduling problem with sequence-dependent set-up times. Journal of the Operations Research Society of Japan, 17(1), 29–38.

    MATH  Google Scholar 

  • Smith, S., Mcintyre, S., & Achabal, D. (1994). A 2-Stage Sales Forecasting Procedure Using Discounted Least-Squares. Journal of Marketing Research, 31(1), 44–56.

    Article  Google Scholar 

  • Sphicus, G. P., & Silverman, F. N. (1976). Deterministic Equivalents for Stochastic Assembly Line Balancing. AIIE Transactions, 8, 280–282.

    Article  MathSciNet  Google Scholar 

  • Stecke, K., & Solgerg, J. (1981). Loading and control policies for a flexible manufacturing system. International Journal of Production Research, 19(5), 481–490.

    Article  Google Scholar 

  • Sternatz, J. (2014). Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry. European Journal of Operational Research, 235(3), 740–754.

    Article  MathSciNet  MATH  Google Scholar 

  • Stoop, P., & Wiers, V. (1996). The complexity of scheduling in practice. International Journal of Operations & Production Management, 16(10), 37–53.

    Article  Google Scholar 

  • Sun, X., & Sun, L. (2005). Ant Colony Optimization algorithms for scheduling the mixed model assembly lines. In: Proceedings of Advances in Natural Computation PT 3, 3612: 911–914.

    Google Scholar 

  • Suresh, G., & Sahu, S. (1994). Stochastic assembly-line balancing using simulated annealing. International Journal of Production Research, 32(8), 1801–1810.

    Article  MATH  Google Scholar 

  • Sztandera, L., Frank, C., & Vemulapali B. (2004). Prediction of women’s apparel sales using soft computing methods. In Proceedings of Knowledge-Based Intelligent Information and Eegineering Systems PT 3, 3215: 506–512.

    Google Scholar 

  • T’kindt, V., Monmarche, N., Tercinet, F., & Laugt, D. (2002). An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research, 142(2), 250–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, Z., & He, Y. (2007). Linear time algorithms for parallel machine scheduling. ACTA Mathematica Sinica-English Series, 23(1), 137–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, L., & Xuan, H. (2006). Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers. Journal of the Operational Research Society, 57(3), 316–324.

    Article  MATH  Google Scholar 

  • Thomassey, S., Happiette, M., & Castelain, J. (2005). A global forecasting support system adapted to textile distribution. International Journal of Production Economics, 96(1), 81–95.

    Article  MATH  Google Scholar 

  • Timpe, C., & Kallrath, J. (2000). Optimal planning in large multi-site production networks. European Journal of Operational Research, 126(2), 422–435.

    Article  MathSciNet  MATH  Google Scholar 

  • Tozkapan, A., Kirca, O., & Chung, C. S. (2003). A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Computers & Operations Research, 30(2), 309–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai, T., & Kimes, S. (2009). A Time Series Case-Based Predicting Model for Reservation Forecasting. Opportunities and Challenges for Next-Generation Applied Intelligence, 214, 53–58.

    Article  Google Scholar 

  • Tucci, M., & Rinaldi, R. (1999). From theory to application: Tabu search in textile production scheduling. Production Planning & Control, 10(4), 365–374.

    Article  Google Scholar 

  • Vanlaarhoven, P., Aarts, E., & Lenstra, J. (1992). Job shop scheduling by simulated annealing. Operations Research, 40(1), 113–125.

    Article  MathSciNet  MATH  Google Scholar 

  • Vargas, J., Pishori, R., Natu, R., & Kee, C. (1992). Expert system mixed-model assembly line scheduling. Expert Systems with Applications, 5(1–2), 79–85.

    Article  Google Scholar 

  • Venkataraman, R., & Nathan, J. (1994). Master production scheduling for a process industry environment—A case study. International Journal of Operations & Production Management, 14(10), 44–53.

    Article  Google Scholar 

  • Wang, L., Keshavarzmanesh, S., Feng, H., & Buchal, R. (2009). Assembly process planning and its future in collaborative manufacturing: A review. International Journal of Advanced Manufacturing Technology, 41(1–2), 132–144.

    Article  Google Scholar 

  • Wazed, M., Ahmed, S., & Nukman, Y. (2010). A review of manufacturing resources planning models under different uncertainties: State-of-the-art and future directions. South African Journal of Industrial Engineering, 21(1), 17–33.

    Google Scholar 

  • Weiss, G. (1995). On almost optimal priority rules for preemptive scheduling of stochastic jobs on parallel machines. Advances in Applied Probability, 27(3), 821–839.

    Article  MathSciNet  MATH  Google Scholar 

  • Weng, M., & Ren, H. (2006). An efficient priority rule for scheduling job shops to minimize mean tardiness. IIE Transactions, 38(9), 789–795.

    Article  Google Scholar 

  • Willems, T., & Rooda, J. (1994). Neural networks for job-shop scheduling. Control Engineering Practice, 2(1), 31–39.

    Article  Google Scholar 

  • Wong, W. K., Mok P. Y., & Leung S. Y. S. (2006). Developing a genetic optimisation approach to balance an apparel assembly line. International Journal of Advanced Manufacturing Technology, 28(3,4), 387–394.

    Google Scholar 

  • Xiao, T., & Yang, D. (2008). Price and service competition of supply chains with risk-averse retailers under demand uncertainty. International Journal of Production Economics, 114(1), 187–200.

    Article  Google Scholar 

  • Yen, B., & Wan, G. (2003). Single machine bicriteria scheduling: A survey. International Journal of Industrial Engineering-Theory Applications and Practice, 10(3), 222–231.

    Google Scholar 

  • Yenisey, M. M., & Yagmahan, B. (2015). Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends. OMEGA-International Journal of Management Science, 45, 119–135.

    Article  Google Scholar 

  • Ying, K., & Liao, C. (2003). An ant colony system approach for scheduling problems. Production Planning & Control, 14(1), 68–75.

    Article  Google Scholar 

  • Yu, J., Yin, Y., & Chen, Z. (2006). Scheduling of an assembly line with a multi-objective genetic algorithm. International Journal of Advanced Manufacturing Technology, 28(5–6), 551–555.

    Article  Google Scholar 

  • Zhang, B., & Gong, S. (2006). Stochastic process time based job shop dynamic scheduling. Dynamics of Continuous Discrete and Impulsive Systems-Series A-Mathematical Analysis, 13, 67–76.

    MathSciNet  Google Scholar 

  • Zhang, Y., Luh, P., Yoneda, K., Kano, T., & Kyoya, Y. (2000). Mixed-model assembly line scheduling using the lagrangian relaxation technique. IIE Transactions, 32(2), 125–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, Z. (2016). New Developments and Decision-makings in Production and Retailing. In: Intelligent Decision-making Models for Production and Retail Operations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52681-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52681-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52679-8

  • Online ISBN: 978-3-662-52681-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics