Skip to main content

Cardiovascular Tissue Engineering

  • Chapter
  • First Online:

Abstract

Cardiovascular diseases still represent the most common cause of morbidity and mortality in Western industrial countries. However, although many new pharmaceutical as well as surgical/interventional treatment options have been developed over the last decades, there is still a large number of limiting factors associated, i.e. with alloplastic materials. Here the development of biological grafts could represent a reasonable way to open new perspectives. In the current chapter, we describe some of the most promising approaches in cardiovascular tissue engineering.

This is a preview of subscription content, log in via an institution.

References

  • Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103–118

    CAS  PubMed  Google Scholar 

  • Aper T, Teebken OE, Steinhoff G, Haverich A (2004) Use of a fibrin preparation in the engineering of a vascular graft model. Eur J Vasc Endovasc Surg 28:296–302

    CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    CAS  PubMed  Google Scholar 

  • Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032

    PubMed  Google Scholar 

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    CAS  PubMed  Google Scholar 

  • Baraki H, Tudorache I, Braun M, Höffler K, Görler A, Lichtenberg A, Bara C, Calistru A, Brandes G et al. (2009) Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30:6240–6246

    CAS  PubMed  Google Scholar 

  • Barratt-Boyes BG (1965) A method for preparing and inserting a homograft aortic valve. Br J Surg 52:11;847–856

    Google Scholar 

  • Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P (1994) Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89:151–163

    CAS  PubMed  Google Scholar 

  • Böer U, Lohrenz A, Klingenberg M, Pich A, Haverich A, Wilhelmi M (2011) The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials 32:9730–9737

    PubMed  Google Scholar 

  • Campbell JH, Efendy JL, Campbell GR (1999) Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 85:1173–1178

    CAS  PubMed  Google Scholar 

  • Cannegieter SC, Rosendaal FR, Briët E (1994) Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89:635–641

    CAS  PubMed  Google Scholar 

  • Carrel A (1902) La technique operatoire des anastomoses vascularies at le transplantation des visceres. Lyon Med 89:22–444

    Google Scholar 

  • Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64:580–589

    CAS  PubMed  Google Scholar 

  • Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Effects of oxygen on engineered cardiac muscle. Biotechnol Bioeng 78:617–625

    CAS  PubMed  Google Scholar 

  • Cebotari S, Mertsching H, Kallenbach K, Kostin S, Repin O, Batrinac A, Kleczka C, Ciubotaru A, Haverich A (2002) Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 106:I63–I68

    PubMed  Google Scholar 

  • Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L et al. (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:I132–I137

    PubMed  Google Scholar 

  • Cebotari S, Tudorache I, Ciubotaru A, Boethig D, Sarikouch S, Goerler A, Lichtenberg A, Cheptanaru E, Barnaciuc S et al. (2011) Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation 124:S115–S123

    PubMed  Google Scholar 

  • Chambard M, Gabrion J, Mauchamp J (1981) Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J Cell Biol 91:157–166

    CAS  PubMed  Google Scholar 

  • Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, Galli R, Balconi G, Follenzi A et al. (2001) Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci U S A 98:10733–10738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dardik I, Dardik H (1973) Vascular heterograft: human umbilical cord vein as an aortic substitute in baboon. A preliminary report. J Med Primatol 2:296–301

    CAS  PubMed  Google Scholar 

  • DeLaurentis DA, Friedmann P (1972) Sequential femoropopliteal bypasses: another approach to the inadequate saphenous vein problem. Surgery 71:400–404

    CAS  PubMed  Google Scholar 

  • Deutsch M, Meinhart J, Fischlein T, Preiss P, Zilla P (1999) Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126:847–855

    CAS  PubMed  Google Scholar 

  • Dohmen PM, Lembcke A, Hotz H, Kivelitz D, Konertz WF (2002a) Ross operation with a tissue-engineered heart valve. Ann Thorac Surg 74:1438–1442

    PubMed  Google Scholar 

  • Dohmen PM, Ozaki S, Verbeken E, Yperman J, Flameng W, Konertz WF (2002b) Tissue engineering of an auto-xenograft pulmonary heart valve. Asian Cardiovasc Thorac Ann 10:25–30

    PubMed  Google Scholar 

  • Dubost C, Allary M, Oeconomos N (1952) Resection of an aneurysm of the abdominal aorta: reestablishment of the continuity by a preserved human arterial graft, with result after five months. AMA Arch Surg 64:405–408

    CAS  PubMed  Google Scholar 

  • Edelman ER (1999) Vascular tissue engineering : designer arteries. Circ Res 85:1115–1117

    CAS  PubMed  Google Scholar 

  • Edwards WS, Tapp JS (1955) Chemically treated nylon tubes as arterial grafts. Surgery 38:61–70

    CAS  PubMed  Google Scholar 

  • Eschenhagen T, Zimmermann WH (2005) Engineering myocardial tissue. Circ Res 97:1220–1231

    CAS  PubMed  Google Scholar 

  • Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schäfer H et al. (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11:683–694

    CAS  PubMed  Google Scholar 

  • Ferber D (1999) Lab-grown organs begin to take shape. Science 284(422–3):425

    PubMed  Google Scholar 

  • Fink C, Ergün S, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 14:669–679

    CAS  PubMed  Google Scholar 

  • Flinn WR, McDaniel MD, Yao JS, Fahey VA, Green D (1984) Antithrombin III deficiency as a reflection of dynamic protein metabolism in patients undergoing vascular reconstruction. J Vasc Surg 1:888–895

    CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  • Freund C, Mummery CL (2009) Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. J Cell Biochem 107:592–599

    CAS  PubMed  Google Scholar 

  • Ginalska G, Kowalczuk D, Osińska M (2005a) A chemical method of gentamicin bonding to gelatine-sealed prosthetic vascular grafts. Int J Pharm 288:131–140

    CAS  PubMed  Google Scholar 

  • Ginalska G, Osinska M, Uryniak A, Urbanik-Sypniewska T, Belcarz A, Rzeski W, Wolski A (2005b) Antibacterial activity of gentamicin-bonded gelatin-sealed polyethylene terephthalate vascular prostheses. Eur J Vasc Endovasc Surg 29:419–424

    CAS  PubMed  Google Scholar 

  • Goldstein S, Clarke DR, Walsh SP, Black KS, O’Brien MF (2000) Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann Thorac Surg 70:1962–1969

    CAS  PubMed  Google Scholar 

  • Goyanes J (1906) Nuevos trabajos de cirurgia vascular. Siglo Med 53:446–561

    Google Scholar 

  • Gross, Bill (1948) Preliminary observations on the use of the human arterial grafts in treatment of certain cardiovascular defects. N Engl J Med 239:578–591

    CAS  PubMed  Google Scholar 

  • Gross RE, Bill AH, Preice EC (1949) Methods for preservation and transplantation of arterial grafts: observations on arterial grafts in dogs; report on transplantation of preserved arterial grafts in nine human cases. Surg Gynecol Obstet 88:68–71

    Google Scholar 

  • Gruene M, Pflaum M, Deiwick A, Koch L, Schlie S, Unger C, Wilhelmi M, Haverich A, Chichkov BN (2011a) Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication 3:015005

    CAS  PubMed  Google Scholar 

  • Gruene M, Pflaum M, Hess C, Diamantouros S, Schlie S, Deiwick A, Koch L, Wilhelmi M, Jockenhoevel S et al. (2011b) Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng C Methods 17:973–982

    Google Scholar 

  • Guido S, Tranquillo RT (1993) A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J Cell Sci 105(Pt 2):317–331

    PubMed  Google Scholar 

  • Gulbins H, Goldemund A, Uhlig A, Pritisanac A, Meiser B, Reichart B (2003) Implantation of an autologously endothelialized homograft. J Thorac Cardiovasc Surg 126:890–891

    PubMed  Google Scholar 

  • Hall HG, Farson DA, Bissell MJ (1982) Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci U S A 79:4672–4676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hata H, Bär A, Dorfman S, Vukadinovic Z, Sawa Y, Haverich A, Hilfiker A (2010) Engineering a novel three-dimensional contractile myocardial patch with cell sheets and decellularised matrix. Eur J Cardiothorac Surg 38:450–455

    PubMed  Google Scholar 

  • Hoerstrup SP, Zünd G, Lachat M, Schoeberlein A, Uhlschmid G, Vogt P, Turina M (1998) Tissue engineering: a new approach in cardiovascular surgery—seeding of human fibroblasts on resorbable mesh. Swiss Surg Suppl 2:23–25

    Google Scholar 

  • Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE (2000) New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6:75–79

    CAS  PubMed  Google Scholar 

  • Hubbell JA, Massia SP, Desai NP, Drumheller PD (1991) Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology (N Y) 9:568–572

    CAS  PubMed  Google Scholar 

  • Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S (1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17:1083–1086

    CAS  PubMed  Google Scholar 

  • Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89:655–661

    CAS  PubMed  Google Scholar 

  • Isomatsu Y, Shin’oka T, Matsumura G, Hibino N, Konuma T, Nagatsu M, Kurosawa H (2003) Extracardiac total cavopulmonary connection using a tissue-engineered graft. J Thorac Cardiovasc Surg 126:1958–1962

    PubMed  Google Scholar 

  • Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP et al. (2002) In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg 124:63–69

    CAS  PubMed  Google Scholar 

  • Kofidis T, de Bruin JL, Hoyt G, Ho Y, Tanaka M, Yamane T, Lebl DR, Swijnenburg RJ, Chang CP et al. (2005) Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 24:737–744

    PubMed  Google Scholar 

  • Kolodney MS, Elson EL (1993) Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J Biol Chem 268:23850–23855

    CAS  PubMed  Google Scholar 

  • Korecky B, Hai CM, Rakusan K (1982) Functional capillary density in normal and transplanted rat hearts. Can J Physiol Pharmacol 60:23–32

    CAS  PubMed  Google Scholar 

  • Kunlin J (1949) Le traitement de lìschemie obliterante par la greffe veineuse longue. Arch Mal Coeur 42:371–372

    Google Scholar 

  • Kuo MD, Waugh JM, Yuksel E, Weinfeld AB, Yuksel M, Dake MD (1998) 1998 ARRS President’s award. The potential of in vivo vascular tissue engineering for the treatment of vascular thrombosis: a preliminary report. American Roentgen Ray Society. AJR Am J Roentgenol 171:553–558

    CAS  PubMed  Google Scholar 

  • L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    PubMed  Google Scholar 

  • Lachapelle K, Graham AM, Symes JF (1994) Antibacterial activity, antibiotic retention, and infection resistance of a rifampin-impregnated gelatin-sealed Dacron graft. J Vasc Surg 19:675–682

    CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    CAS  PubMed  Google Scholar 

  • Laube HR, Duwe J, Rutsch W, Konertz W (2000) Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J Thorac Cardiovasc Surg 120:134–141

    CAS  PubMed  Google Scholar 

  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:III56–III61

    CAS  PubMed  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM (1999) Survival and function of bioengineered cardiac grafts. Circulation 100:II63–II69

    CAS  PubMed  Google Scholar 

  • Linton RR, Darling RC (1962) Autogenous saphenous vein bypass grafts in femoropopliteal obliterative arterial disease. Surgery 51:62–73

    CAS  PubMed  Google Scholar 

  • Lutter G, Metzner A, Jahnke T, Bombien R, Boldt J, Iino K, Cremer J, Stock UA (2010) Percutaneous tissue-engineered pulmonary valved stent implantation. Ann Thorac Surg 89:259–263

    PubMed  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S et al. (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand MA, Aupart MR, Norton R, Goldsmith IR, Pelletier LC, Pellerin M, Dubiel T, Daenen WJ, Herijgers P et al. (2001) Fifteen-year experience with the mitral Carpentier-Edwards PERIMOUNT pericardial bioprosthesis. Ann Thorac Surg 71:S236–S239

    CAS  PubMed  Google Scholar 

  • Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26:7481–7503

    CAS  PubMed  Google Scholar 

  • McDonald TF, Sachs HG, DeHaan RL (1972) Development of sensitivity to tetrodotoxin in beating chick embryo hearts, single cells, and aggregates. Science 176:1248–1250

    CAS  PubMed  Google Scholar 

  • Menasché P, Hagège AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP (2001) Myoblast transplantation for heart failure. Lancet 357:279–280

    PubMed  Google Scholar 

  • Metzner A, Stock UA, Iino K, Fischer G, Huemme T, Boldt J, Braesen JH, Bein B, Renner J et al. (2010) Percutaneous pulmonary valve replacement: autologous tissue-engineered valved stents. Cardiovasc Res 88:453–461

    CAS  PubMed  Google Scholar 

  • Miller JH, Foreman RK, Ferguson L, Faris I (1984) Interposition vein cuff for anastomosis of prosthesis to small artery. Aust N Z J Surg 54:283–285

    CAS  PubMed  Google Scholar 

  • Miwa H, Matsuda T (1994) An integrated approach to the design and engineering of hybrid arterial prostheses. J Vasc Surg 19:658–667

    CAS  PubMed  Google Scholar 

  • Moscona AA (1959) Tissues from dissociated cells. Sci Am 200:132–134, passim

    CAS  PubMed  Google Scholar 

  • Murphy JB (1897) Resection of arteries and veins injured in continuity—end-to-end suture: experimental results and clinical research. Cell Commun Adhes 9:73–88

    Google Scholar 

  • Murugesan G, Ruegsegger MA, Kligman F, Marchant RE, Kottke-Marchant K (2002) Integrin-dependent interaction of human vascular endothelial cells on biomimetic peptide surfactant polymers. Cell Commun Adhes 9:59–73

    CAS  PubMed  Google Scholar 

  • Narsinh K, Narsinh KH, Wu JC (2011) Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circ Res 108:1146–1156

    CAS  PubMed  Google Scholar 

  • Nerem RM (1992) Tissue engineering in the USA. Med Biol Eng Comput 30:CE8–C12

    CAS  PubMed  Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493

    CAS  PubMed  Google Scholar 

  • O’Brien MF, Goldstein S, Walsh S, Black KS, Elkins R, Clarke D (1999) The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg 11:194–200

    PubMed  Google Scholar 

  • Oh Y, Wei H, Ma D, Sun X, Liew R (2012) Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicine. Heart 98:443–449

    CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    CAS  PubMed  Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    CAS  PubMed  Google Scholar 

  • Outdot J (1951) La greffe vasculaire dans les thromboses du carrefour aortique. Presse Med 59:169–77

    Google Scholar 

  • Outdot J, Beaconsfield P (1953) Thromboses of the aortic bifurcation treated by resection and homograft replacement. Arch Surg 66:365–374

    Google Scholar 

  • Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2:014104

    CAS  PubMed  Google Scholar 

  • Ozawa T, Mickle DA, Weisel RD, Matsubayashi K, Fujii T, Fedak PW, Koyama N, Ikada Y, Li RK (2004) Tissue-engineered grafts matured in the right ventricular outflow tract. Cell Transplant 13:169–177

    PubMed  Google Scholar 

  • Pavcnik D, Uchida BT, Timmermans HA, Corless CL, O’Hara M, Toyota N, Moneta GL, Keller FS, Rösch J (2002) Percutaneous bioprosthetic venous valve: a long-term study in sheep. J Vasc Surg 35:598–602

    PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  • Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101:18129–18134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radisic M, Deen W, Langer R, Vunjak-Novakovic G (2005) Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol 288:H1278–H1289

    CAS  PubMed  Google Scholar 

  • Rahimtoola SH (2003) Choice of prosthetic heart valve for adult patients. J Am Coll Cardiol 41:893–904

    PubMed  Google Scholar 

  • Rahlf G, Urban P, Bohle RM (1986) Morphology of healing in vascular prostheses. Thorac Cardiovasc Surg 34:43–48

    CAS  PubMed  Google Scholar 

  • Rakusan K, Flanagan MF, Geva T, Southern J, Van Praagh R (1992) Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation 86:38–46

    CAS  PubMed  Google Scholar 

  • Ratajska A, Ciszek B, Sowińska A (2003) Embryonic development of coronary vasculature in rats: corrosion casting studies. Anat Rec A: Discov Mol Cell Evol Biol 270:109–116

    PubMed  Google Scholar 

  • Rosenberg N (1976) The bovine arterial graft and its several applications. Surg Gynecol Obstet 142:104–108

    CAS  PubMed  Google Scholar 

  • Rosenberg NG, Henderson J (1956) The use of segmental arterial implants prepared by enzymatic modification of heterologous blood vessels. Surg Forum 6:242

    PubMed  Google Scholar 

  • Ross DN (1967) Homograft replacement of the aortic valve. Anglo Ger Med Rev 4:62–66

    CAS  PubMed  Google Scholar 

  • Rufaihah AJ, Huang NF, Jamé S, Lee JC, Nguyen HN, Byers B, De A, Okogbaa J, Rollins M et al. (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. arteriosclerosis, thrombosis, and vascular biology 31:e72–e79

    Google Scholar 

  • Sagnella S, Kligman F, Marchant RE, Kottke-Marchant K (2003) Biometric surfactant polymers designed for shear-stable endothelialization on biomaterials. J Biomed Mater Res A 67:689–701

    PubMed  Google Scholar 

  • Sagnella S, Anderson E, Sanabria N, Marchant RE, Kottke-Marchant K (2005) Human endothelial cell interaction with biomimetic surfactant polymers containing Peptide ligands from the heparin binding domain of fibronectin. Tissue Eng 11:226–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvage LR, Berger KE, Mansfield PB, Wood SJ, Smith JC, Overton JB (1974) Future directions in the development of arterial prostheses for small and medium caliber arteries. Surg Clin North Am 54:213–228

    CAS  PubMed  Google Scholar 

  • Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, Carabasi RA, Dimuzio PJ (2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 40:146–153

    PubMed  Google Scholar 

  • Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231

    CAS  PubMed  Google Scholar 

  • Schmidt D, Dijkman PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A, Rissanen M, Deichmann T, Odermatt B et al. (2010). Minimally-invasive implantation of living tissue engineered heart valves: A comprehensive approach fromautologousvascular cells tostem cells 56(6):510–520

    Google Scholar 

  • Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ (2002) Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 26:307–320

    PubMed  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40

    CAS  PubMed  Google Scholar 

  • Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T (2006) Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 12:499–507

    CAS  PubMed  Google Scholar 

  • Shinoka T, Ma PX, Shum-Tim D, Breuer CK, Cusick RA, Zund G, Langer R, Vacanti JP, Mayer JE (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:II164–II168

    CAS  PubMed  Google Scholar 

  • Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacanti JP, Mayer JE (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115:536–545; discussion 545–6

    CAS  PubMed  Google Scholar 

  • Shumacker HB, King H (1954) The use of pliable plastic tubes as aortic substitutes in man. Surg Gynecol Obstet 99:287–294

    PubMed  Google Scholar 

  • Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM et al. (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68:2298–2304; discussion 2305

    CAS  PubMed  Google Scholar 

  • Siegman FA (1979) Use of the venous cuff for graft anastomosis. Surg Gynecol Obstet 148:930

    CAS  PubMed  Google Scholar 

  • Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006; discussion 1006

    CAS  PubMed  Google Scholar 

  • Simpson DG, Terracio L, Terracio M, Price RL, Turner DC, Borg TK (1994) Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol 161:89–105

    CAS  PubMed  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, Kim BS, Schoen FJ, Vacanti JP, Mayer JE (2000) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102:III22–III29

    CAS  PubMed  Google Scholar 

  • Souren JE, Schneijdenberg C, Verkleij AJ, Van Wijk R (1992) Factors controlling the rhythmic contraction of collagen gels by neonatal heart cells. In Vitro Cell Dev Biol 28A:199–204

    CAS  PubMed  Google Scholar 

  • Sparks CH (1973) Silicone mandril method for growing reinforced autogenous femoro-popliteal artery grafts in situ. Ann Surg 177:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III50–III55

    CAS  PubMed  Google Scholar 

  • Sys SU, Pellegrino D, Mazza R, Gattuso A, Andries LJ, Tota L (1997) Endocardial endothelium in the avascular heart of the frog: morphology and role of nitric oxide. J Exp Biol 200:3109–3118

    CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  • Taylor RS, Loh A, McFarland RJ, Cox M, Chester JF (1992) Improved technique for polytetrafluoroethylene bypass grafting: long-term results using anastomotic vein patches. Br J Surg 79:348–354

    CAS  PubMed  Google Scholar 

  • Teebken OE, Haverich A (2002) Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 23:475–485

    PubMed  Google Scholar 

  • Teebken OE, Wilhelmi M, Haverich A (2005) Tissue Engineering für Herzklappen und Gefässe. Chirurg 76:453–466

    CAS  PubMed  Google Scholar 

  • Terracio L, Miller B, Borg TK (1988) Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell Dev Biol 24:53–58

    CAS  PubMed  Google Scholar 

  • Torbet J, Ronzière MC (1984) Magnetic alignment of collagen during self-assembly. Biochem J 219:1057–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tranquillo RT, Girton TS, Bromberek BA, Triebes TG, Mooradian DL (1996) Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17:349–357

    CAS  PubMed  Google Scholar 

  • Tschoeke B, Flanagan TC, Cornelissen A, Koch S, Roehl A, Sriharwoko M, Sachweh JS, Gries T, Schmitz-Rode T, Jockenhoevel S (2008) Development of a composite degradable/nondegradable tissue-engineered vascular graft. Artif Organs 32:800–809

    PubMed  Google Scholar 

  • Tschoeke B, Flanagan TC, Koch S, Harwoko MS, Deichmann T, Ellå V, Sachweh JS, Kellomåki M, Gries T et al. (2009) Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng A 15:1909–1918

    CAS  Google Scholar 

  • Tucker OP, Syburra T, Augstburger M, van Melle G, Gebhard S, Bosman F, von Segesser LK (2002) Small intestine without mucosa as a growing vascular conduit: a porcine experimental study. J Thorac Cardiovasc Surg 124:1165–1175

    PubMed  Google Scholar 

  • Tudorache I, Kostin S, Meyer T, Teebken O, Bara C, Hilfiker A, Haverich A, Cebotari S (2009) Viable vascularized autologous patch for transmural myocardial reconstruction. Eur J Cardiothorac Surg 36:306–311; discussion 311

    PubMed  Google Scholar 

  • Tyrrell MR, Wolfe JH (1991) New prosthetic venous collar anastomotic technique: combining the best of other procedures. Br J Surg 78:1016–1017

    CAS  PubMed  Google Scholar 

  • Vacanti JP (1988) Beyond transplantation. Third annual Samuel Jason Mixter lecture. Arch Surg 123:545–549

    CAS  PubMed  Google Scholar 

  • Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl 1):SI32–SI34

    PubMed  Google Scholar 

  • Vandenburgh HH, Karlisch P, Farr L (1988) Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol 24:166–174

    CAS  PubMed  Google Scholar 

  • Vandenburgh HH, Swasdison S, Karlisch P (1991) Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J 5:2860–2867

    CAS  PubMed  Google Scholar 

  • Vara DS, Salacinski HJ, Kannan RY, Bordenave L, Hamilton G, Seifalian AM (2005) Cardiovascular tissue engineering: state of the art. Pathol Biol (Paris) 53:599–612

    PubMed  Google Scholar 

  • Vogt PR, Stallmach T, Niederhäuser U, Schneider J, Zünd G, Lachat M, Künzli A, Turina MI (1999) Explanted cryopreserved allografts: a morphological and immunohistochemical comparison between arterial allografts and allograft heart valves from infants and adults. Eur J Cardiothorac Surg 15:639–644; discussion 644–645

    CAS  PubMed  Google Scholar 

  • Voorhees AB, Jaretzki A, Blakemore AH (1952) The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann Surg 135:332–336

    Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    CAS  PubMed  Google Scholar 

  • Wilhelmi MH, Mertsching H, Wilhelmi M, Leyh R, Haverich A (2003a) Role of inflammation in allogeneic and xenogeneic heart valve degeneration: immunohistochemical evaluation of inflammatory endothelial cell activation. J Heart Valve Dis 12:520–526

    PubMed  Google Scholar 

  • Wilhelmi MH, Rebe P, Leyh R, Wilhelmi M, Haverich A, Mertsching H (2003b) Role of inflammation and ischemia after implantation of xenogeneic pulmonary valve conduits: histological evaluation after 6 to 12 months in sheep. Int J Artif Organs 26:411–420

    CAS  PubMed  Google Scholar 

  • Williams SK (1995) Endothelial cell transplantation. Cell Transplant 4:401–410

    CAS  PubMed  Google Scholar 

  • Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H (1995) Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 60:S353–S358

    CAS  PubMed  Google Scholar 

  • Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13:497–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zehr KJ, Yagubyan M, Connolly HM, Nelson SM, Schaff HV (2005) Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. J Thorac Cardiovasc Surg 130:1010–1015

    PubMed  Google Scholar 

  • Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68:106–114

    CAS  PubMed  Google Scholar 

  • Zimmermann WH, Schneiderbanger K, Schubert P, Didié M, Münzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230

    CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias H. Wilhelmi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilhelmi, M.H., Haverich, A. (2017). Cardiovascular Tissue Engineering. In: Ziemer, G., Haverich, A. (eds) Cardiac Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52672-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52672-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52670-5

  • Online ISBN: 978-3-662-52672-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics