Skip to main content

Palliative Plasmabehandlung von Kopf-Hals-Tumoren und kurative Konzepte

  • Chapter
  • First Online:
Plasmamedizin

Zusammenfassung

Die Behandlung von Tumoren im Kopf-Hals-Bereich mit CAP („cold atmospheric pressure plasma“) hat für die Patienten einen palliativen Nutzen, wenn im fortgeschrittenen Krankheitsstadium eine Dekontamination der infizierten Tumorgeschwüre gelingt, verbunden mit Schmerzlinderung, Verminderung der Sepsisgefahr und Beseitigung des typischen üblen Geruchs von vereiterten Tumoren. Die Kopf-Hals-Karzinome eignen sich auch als Modelltumor zur Entwicklung von kurativen Konzepten der Plasmatumortherapie. Als Nebeneffekt der Dekontamination ist regelmäßig eine klinisch erkennbare, morphologische Veränderung der CAP-behandelten Tumoroberfläche zu beobachten, auf der es zur Tumorschrumpfung kommt, zum Stopp des Wachstums, zur verstärkten Durchblutung oder zum Biofilmverlust. Eine Klassifikation der morphologischen Tumorveränderungen unter Einwirkung von CAP unterstützt die strukturierte weitere Forschung auf dem Weg zu einer kurativen Plasmatumortherapie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adachi T, Tanaka H, Nonomura S, Hara H, Kondo SI, Hori M (2014) Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free radical biology & medicine 79C: 28–44. doi:10.1016/j.freeradbiomed.2014.11.014

    Google Scholar 

  • Ahn HJ, Kim KI, Kim G, Moon E, Yang SS, Lee JS (2011) Atmospheric-Pressure Plasma Jet Induces Apoptosis Involving Mitochondria via Generation of Free Radicals. Plos One 6 (11): e28154. doi: 10.1371/journal.pone.0028154

    Article  Google Scholar 

  • Barekzi N, Laroussi M (2012) Dose-dependent killing of leukemia cells by low-temperature plasma. J Phys D Appl Phys 45 (42): 422002. doi: 10.1088/0022-3727/45/42/422002

    Article  Google Scholar 

  • Brehmer F, Haenssle HA, Daeschlein G, Ahmed R, Pfeiffer A, Goerlitz A, et al (2015) Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerms VU-2010): results of a mono-entric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol 29: 148–155

    Article  CAS  PubMed  Google Scholar 

  • Brullé L, Vandamme M, Ries D, Martel E, Robert E, Lerondel S, Trichet V, Richard S, Pouvesle JM, Le Pape A (2012) Effects of a Non Thermal Plasma Treatment Alone or in Combination with Gemcitabine in a MIA PaCa2-luc Orthotopic Pancreatic Carcinoma Model. Plos One 7 (12): e52653. doi: 10.1371/journal.pone.0052653

    Article  Google Scholar 

  • Chang JW, Kang SU, Shin YS, Kim KI, Seo SJ, Yang SS, Lee JS, Moon E, Baek SJ, Lee K, Kim CH (2014a) Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G(1) arrest via the ATM/p53 pathway. Archives of biochemistry and biophysics 545: 133–140

    Article  CAS  PubMed  Google Scholar 

  • Chang JW, Kang SU, Shin YS, Kim KI, Seo SJ, Yang SS, Lee JS, Moon E, Lee K, Kim CH (2014b) Non-thermal atmospheric pressure plasma inhibits thyroid papillary cancer cell invasion via cytoskeletal modulation, altered MMP-2/-9/uPA activity. Plos One 9 (3):e92198. doi:10.1371/journal.pone.0092198

    Article  Google Scholar 

  • Daeschlein G, Scholz S, Lutze S, Arnold A, et al. (2013) Comparison between cold plasma, electro chemotherapy and combined therapy in a melanoma mouse model. Exp Dermatol 22: 582–586

    Article  PubMed  Google Scholar 

  • Daeschlein G, Napp M, von Podewils S, Lutze S, Emmert S, Lange A, et al. (2014) In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym 11: 175–183

    Article  CAS  Google Scholar 

  • Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma P 27(2): 163–176

    Article  CAS  Google Scholar 

  • Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, Ravi R, Sidransky D, Keidar M, Trink B (2014) Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med 34(4): 941–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gweon B, Kim M, Kim DB, Kim D, Kim H, Jung H, Shin JH, Choe W (2011) Differential responses of human liver cancer and normal cells to atmospheric pressure plasma. Appl Phys Lett 99 (6): 063701. doi: 10.1063/1.3622631

    Article  Google Scholar 

  • Han X, Klas M, Liu YY, Stack MS, Ptasinska S (2013) DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets. Appl Phys Lett 102 (23): 233703. doi: 10.1063/1.4809830

    Article  Google Scholar 

  • Hasse S, Tran TD, Hahn O, Weltmann KD, Metelmann HR, Masur K (2014) Plasma application in human skin – molecular analyses in situ. Exp Dermatol 23: e51

    Google Scholar 

  • Hirst AM, Frame FM, Maitland NJ, O'Connell D (2014) Low temperature plasma: a novel focal therapy for localized prostate cancer? Biomed Res Int 2014: 878319. doi:10.1155/2014/878319

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J, Chen W, Li H, Wang XQ, Lv GH, Khosa ML, Guo M, Feng KC, Wang PY, Yang SZ (2011) Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle. J Appl Phys 109 (5): 053305. doi: 10.1063/1.3553873

    Article  Google Scholar 

  • Huang J, Chen W, Li H, Wang PY, Yang SZ (2013) Inactivation of He la cancer cells by an atmospheric pressure cold plasma jet. Acta Phys Sin-Ch Ed 62 (6): 065201. doi: 10.7498/Aps.62.065201

    Google Scholar 

  • Iida M, Yajima I, Ohgami N, Tamura H, Takeda K, Ichihara S, Hori M, Kato M (2014) The effects of non-thermal atmospheric pressure plasma irradiation on expression levels of matrix metalloproteinases in benign melanocytic tumors in RET-transgenic mice. Eur J Dermatol 24(3): 392–394

    PubMed  Google Scholar 

  • Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J et al. (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol 163: 78–82

    CAS  PubMed  Google Scholar 

  • Isbary G, Zimmermann JL, Shimizu T, Li YF, Morfill GE, Thomas HM, et al. (2013) Non-thermal plasma – more than five years of clinical experience. J Clin Plasma Med 1: 19–23

    Article  Google Scholar 

  • Iseki S, Nakamura K, Hayashi M, Tanaka H, Kondo H, Kajiyama H, Kano H, Kikkawa F, Hori M (2012) Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett 100 (11):113702. doi: 10.1063/1.3694928

    Article  Google Scholar 

  • Ishaq M, Evans MD, Ostrikov KK (2014) Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochim Biophys Acta 1843(12): 2827–2837

    Article  CAS  PubMed  Google Scholar 

  • Kang SU, Cho JH, Chang JW, Shin YS, Kim KI, Park JK, Yang SS, Lee JS, Moon E, Lee K, Kim CH (2014) Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis 5: e1056. doi:10.1038/cddis.2014.33

    Article  Google Scholar 

  • Kaushik NK, Uhm H, Choi EH (2012) Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells. Appl Phys Lett 100 (8): 084102. doi: 10.1063/1.3687172

    Article  Google Scholar 

  • Kaushik NK, Kim YH, Han YG, Choi EH (2013) Effect of jet plasma on T98G human brain cancer cells (vol 13, pg 176, 2012). Curr Appl Phys 13(3): 614–618. doi: 10.1016/j.cap.2012.10.009

    Article  Google Scholar 

  • Kaushik NK, Kaushik N, Park D, Choi EH (2014) Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment. Plos One 9 (7):e103349. doi:10.1371/journal.pone.0103349

    Article  Google Scholar 

  • Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 105(9): 1295–1301. doi:10.1038/bjc.2011.386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CH, Kwon S, Bahn JH, Lee K, Jun SI, Rack PD, Baek SJ (2010a) Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl Phys Lett 96 (24):243701. doi: 10.1063/1.3449575

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim CH, Bahn JH, Lee SH, Kim GY, Jun SI, Lee K, Baek SJ (2010b) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. Journal of biotechnology 150(4): 530–538

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Chung TH, Bae SH, Leem SH (2010c) Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet. Appl Phys Lett 97(2): 023702. doi: 10.1063/1.3462293

    Article  Google Scholar 

  • Kim K, Choi JD, Hong YC, Kim G, Noh EJ, Lee JS, Yang SS (2011) Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy. Appl Phys Lett 98 (7): 073701. doi: 10.1063/1.3555434

    Article  Google Scholar 

  • Koritzer J, Boxhammer V, Schafer A, Shimizu T, Klampfl TG, Li YF, Welz C, Schwenk-Zieger S, Morfill GE, Zimmermann JL, Schlegel J (2013) Restoration of Sensitivity in Chemo - Resistant Glioma Cells by Cold Atmospheric Plasma. Plos One 8 (5): e64498. doi: 10.1371/journal.pone.0064498

    Article  Google Scholar 

  • Lee HJ, Shon CH, Kim YS, Kim S, Kim GC, Kong MG (2009) Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma. New J Phys 11: 115026. doi: 10.1088/1367-2630/11/11/115026

    Article  Google Scholar 

  • Leduc M, Guay D, Leask RL, Coulombe S (2009) Cell permeabilization using a non-thermal plasma. New J Phys 11: 115021. doi: 10.1088/1367-2630/11/11/115021

    Article  Google Scholar 

  • Lupu AR, Georgescu N, Calugaru A, Cremer L, Szegli G, Kerek F (2009) The effects of cold atmospheric plasma jets on B16 and COLO320 tumoral cells. Roumanian archives of microbiology and immunology 68(3): 136–144

    CAS  PubMed  Google Scholar 

  • Metelmann HR (2016) Cancer treatment and physical plasma: phase-I clinical study concept and first results. 3rd International Workshop on Plasma for Cancer Treatment, Washington DC, April 2016: oral session

    Google Scholar 

  • Metelmann B, Metelmann C (2016, personal appraisal) Telemedicine at the Emergency Site – Evaluated by emergency team members in simulated scenarios. Inauguraldissertation, Universitätsmedizin Greifswald

    Google Scholar 

  • Metelmann HR, Nedrelow DS, Seebauer C, Schuster M, von Woedtke T, Metelmann P et al. (2015) Head and neck cancer treatment and physical plasma. Clin Plasma Med 3: 17–23

    Article  Google Scholar 

  • Panngom K, Baik KY, Nam MK, Han JH, Rhim H, Choi EH (2013) Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis 4: e642. doi:10.1038/cddis.2013.168

    Article  Google Scholar 

  • Partecke LI, Evert K, Haugk J, Doering F, Normann L, Diedrich S, Weiss FU, Evert M, Huebner NO, Guenther C, Heidecke CD, Kramer A, Bussiahn R, Weltmann KD, Pati O, Bender C, von Bernstorff W (2012) Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. Bmc Cancer 12: 473. doi:10.1186/1471-2407-12-473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratovitski EA, Cheng X, Yan D, Sherman JH, Canady J, Trink B, et al. (2014) Anti-cancer therapies of 21st century: novel approach to treat human cancers using cold atmospheric plasma. Plasma Process Polym 11: 1128–1137

    Article  CAS  Google Scholar 

  • Sato T, Yokoyama M, Johkura K (2011) A key inactivation factor of HeLa cell viability by a plasma flow. J Phys D Appl Phys 44 (37):372001. doi: 10.1088/0022-3727/44/37/372001

    Article  Google Scholar 

  • Schlegel J, Koeritzer J, Boxhammer V (2013) Plasma in cancer treatment. J Clin Plasma Med 1(2): 2–7

    Article  Google Scholar 

  • Schuster M, Metelmann HR (2015) Decontamination of super infected tumors with cold atmospheric pressure plasma (CAP) and mistletoe – clinical cancer study program in head and neck surgery – CC2.IWPCT – Second International Workshop on Plasma for Cancer Treatment, March 16–17, 2015, Nagoya University, Japan, poster session: P62

    Google Scholar 

  • Seebauer C, Hasse S, Metelmann HR (2015) Supportive plasma treatment in palliative cancer care – clinical cancer study program in head and neck surgery – CC1.IWPCT – Second International Workshop on Plasma for Cancer Treatment, March 16–17, 2015, Nagoya University, Japan, poster session: P63

    Google Scholar 

  • Sensenig R, Kalghatgi S, Cerchar E, Fridman G, Shereshevsky A, Torabi B et al. (2011) Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann Biomed Eng 39(2): 674–687

    Article  PubMed  Google Scholar 

  • Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Kajiyama H, Kano H, Kikkawa F, Hori M (2011) Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase. Plasma Medicine 1(3–4): 265–277

    Article  Google Scholar 

  • Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Utsumi F, Kajiyama H, Kano H, Maruyama S, Kikkawa F, Hori M (2012) Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Medicine 2(4): 207–220

    Article  Google Scholar 

  • Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Utsumi F, Kajiyama H, Kano H, Okazaki Y, Toyokuni S, Maruyama S, Kikkawa F, Hori M (2014) Plasma Medical Science for Cancer Therapy: Toward cancer therapy using non-thermal atmospheric pressure plasma. Ieee T Plasma Sci 42(12): 3760–3764

    Article  CAS  Google Scholar 

  • Thiyagarajan M, Sarani A, Gonzales X (2012) Characterization of Portable Resistive Barrier Plasma Jet and Its Direct and Indirect Treatment for Antibiotic Resistant Bacteria and THP-1 Leukemia Cancer Cells. Ieee T Plasma Sci 40(12): 3533–3545

    Article  CAS  Google Scholar 

  • Torii K, Yamada S, Nakamura K, Tanaka H, Kajiyama H, Tanahashi K, Iwata N, Kanda M, Kobayashi D, Tanaka C, Fujii T, Nakayama G, Koike M, Sugimoto H, Nomoto S, Natsume A, Fujiwara M, Mizuno M, Hori M, Saya H, Kodera Y (2014) Effectiveness of plasma treatment on gastric cancer cells. Gastric Cancer 18(3): 635–643. doi:10.1007/s10120-014-0395-6

    Article  PubMed  Google Scholar 

  • Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F (2013) Effect of Indirect Nonequilibrium Atmospheric Pressure Plasma on Anti-Proliferative Activity against Chronic Chemo-Resistant Ovarian Cancer Cells In Vitro and In Vivo. Plos One 8 (12):e81576. doi:10.1371/journal.pone.0081576

    Article  Google Scholar 

  • Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Hori M, Kikkawa F (2014) Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma. SpringerPlus 3: 398. doi:10.1186/2193-1801-3-398

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandamme M, Robert E, Pesnel S, Barbosa E, Dozias S, Sobilo J, Lerondel S, Le Pape A, Pouvesle JM (2010) Antitumor Effect of Plasma Treatment on U87 Glioma Xenografts: Preliminary Results. Plasma Process Polym 7(3–4): 264–273

    Article  CAS  Google Scholar 

  • Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, et al. (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130: 2185–2194

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG (2013) Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. Plos One 8 (9):e73741. doi:10.1371/journal.pone.0073741

    Article  Google Scholar 

  • Yajima I, Iida M, Kumasaka MY, Omata Y, Ohgami N, Chang J, Ichihara S, Hori M, Kato M (2014) Non-equilibrium atmospheric pressure plasmas modulate cell cycle-related gene expressions in melanocytic tumors of RET-transgenic mice. Exp Dermatol 23(6): 424–425

    Article  CAS  PubMed  Google Scholar 

  • Zirnheld JL, Zucker SN, DiSanto TM, Berezney R, Etemadi K (2010) Nonthermal Plasma Needle: Development and Targeting of Melanoma Cells. Ieee T Plasma Sci38(4): 948–952

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seebauer, C., Tanaka, H., Hori, M., Metelmann, H.R. (2016). Palliative Plasmabehandlung von Kopf-Hals-Tumoren und kurative Konzepte. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Plasmamedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52645-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52645-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52644-6

  • Online ISBN: 978-3-662-52645-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics