Skip to main content

Wissenschaftliche Grundlagen, Stand und Perspektiven der Plasmamedizin

  • Chapter
  • First Online:
Book cover Plasmamedizin

Zusammenfassung

Durch Zufuhr von elektrischer Energie kommt es zur Ionisation von Atomen oder Molekülen eines selbst nicht unmittelbar wirksamen Gases: Physikalisches Plasma entsteht. Medizinisch eingesetzte Plasmen werden unter atmosphärischen Bedingungen generiert. Biologische und medizinisch nutzbare Plasmaeffekte werden überwiegend über Veränderungen der flüssigen Zellumgebung vermittelt und basieren auf der Wirkung von redoxaktiven reaktiven Sauerstoff- und Stickstoffspezies. Aufgrund des physiologischen Vorkommens der redoxaktiven Spezies gibt es körpereigene Systeme zur Aufrechterhaltung der zellulären Redoxhomöostase. Geringe Behandlungsintensitäten/Einwirkungszeiten führen zur Stimulation von Zellen, was eine wesentliche Grundlage für die plasmaunterstützte Wundheilung darstellt. Höhere Behandlungsintensitäten/Einwirkungszeiten führen zur Inaktivierung/Abtötung von Zellen. Hieraus eröffnen sich Anwendungsperspektiven in der Krebstherapie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • d’Agostino R, Favia P, Oehr C, Wertheimer MR (2005) Low-temperature plasma processing of materials: past, present, and future. Plasma Process Polym 2: 7–15

    Article  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Rep Regen 16: 585–601

    Article  Google Scholar 

  • Barton A, Wende K, Bundscherer L, Hasse S, Schmidt A, Bekeschus S, Weltmann KD, Lindequist U, Masur K (2013) Nonthermal Plasma Increases Expression of Wound Healing Related Genes in a Keratinocyte Cell Line. Plasma Med 3: 125–136

    Article  Google Scholar 

  • Bauer, Faulhaber, Kober (1928) Der Hochfrequenzstrahlapparat. Sein Wesen und seine Anwendung. Verlag Dr. H. Stock, München

    Google Scholar 

  • Bekeschus S (2015) Effects of Cold Physical Plasma on Human Leukocytes. Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Ernst-Moritz-Arndt Universität Greifswald

    Google Scholar 

  • Bekeschus S, von Woedtke T, Kramer A, Weltmann KD, Masur K (2013a) Cold physical plasma treatment alters redox balance in human immune cells. Plasma Med 3: 267–278

    Article  Google Scholar 

  • Bekeschus S, Masur K, Kolata J, Wende K, Schmidt A, Bundscherer L, Barton A, Kramer A, Bröker B, Weltmann KD (2013b) Human Mononuclear Cell Survival and Proliferation is Modulated by Cold Atmospheric Plasma Jet. Plasma Process Polym 10: 706–713

    Article  CAS  Google Scholar 

  • Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann KD, Bröker B, Masur K (2014) Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radical Res 48: 542–549

    Article  CAS  Google Scholar 

  • Bekeschus S, Iséni S, Reuter S, Masur K, Weltmann KD (2015) Nitrogen shielding of argon plasma jet and its effects on human immune cells. IEEE Trans Plasma Sci 43: 776–781

    Article  CAS  Google Scholar 

  • Bentkover SH (2012) Plasma Skin Resurfacing: Personal Experience and Long-Term Results. Facial Plast Surg Clin North America 20: 145–162

    Article  Google Scholar 

  • Boxhammer V, Li YF, Köritzer J, Shimizu T, Maisch T, Thomas HM, Schlegel J, Morfill GE, Zimmermann JL (2013) Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutat Res-Gen Tox En 753: 23–28

    Article  CAS  Google Scholar 

  • Brandner JM, Houdek P, Hüsing B, Kaiser C, Moll I (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122: 1310–1320

    Article  CAS  PubMed  Google Scholar 

  • Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85: 705–717

    Article  CAS  PubMed  Google Scholar 

  • Bundscherer L, Bekeschus S, Tresp H, Hasse S, Reuter S, Weltmann KD, Lindequist U, Masur K (2013a) Viability of Human Blood Leukocytes Compared with Their Respective Cell Lines after Plasma Treatment. Plasma Med 3: 71–80

    Article  Google Scholar 

  • Bundscherer L, Wende K, Ottmüller K, Barton A, Schmidt A, Bekeschus S, Hasse S, Weltmann KD, Masur K, Lindequist U (2013b) Impact of non-thermal plasma treatment on MAPK signaling pathways of humanimmune cell lines. Immunobiology 218: 1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Burger H (1933) The doctor, the quack and the appetite of the public for magic in medicine. P Roy Soc Med 27: 171–176

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) Hormesis: The dose-response revolution. Annu Rev Pharmacol 43: 175–197

    Article  CAS  Google Scholar 

  • Cha S, Park YS (2014) Plasma in dentistry. Clin Plasma Med 2: 4–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Bio Med 48: 749–762

    Article  CAS  Google Scholar 

  • Daeschlein G, Scholz S, Emmert S, von Podewils S, Haase H, von Woedtke T, Jünger M (2012) Plasma medicine in Dermatology: Basic antimicrobial efficacy testing as prerequisite to clinical plasma therapy. Plasma Med 2: 33–69

    Article  Google Scholar 

  • Daeschlein G, Napp M, von Podewils S, Lutze S, Emmert S, Lange A, Klare I, Haase H, Gümbel D, von Woedtke T, Jünger M (2014) In Vitro Susceptibility of Multidrug Resistant Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD). Plasma Process Polym 11: 175–183

    Article  CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95

    Article  PubMed  Google Scholar 

  • Emmert S, Isbary G, Klutschke F, Lademann J, Westermann U, Podmelle F, Metelmann HR, Daeschlein G, Masur K, von Woedtke T, Weltmann KD (2013) Clinical Plasma Medicine – Position and Perspectives. Clin Plasma Med 1: 3–4

    Article  Google Scholar 

  • Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat Rev Microbiol 2: 820–832

    Article  CAS  PubMed  Google Scholar 

  • Foster KW, Moy RL, Fincher EF (2008) Advances in plasma skin regeneration. J Cosmet Dermatol 7: 169–179

    Article  PubMed  Google Scholar 

  • Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied Plasma Medicine. Plasma Process Polym 5: 503–533

    Article  CAS  Google Scholar 

  • Gärtner S (2015) Genotoxizitätsuntersuchung von atmosphärischem Niedertemperaturplasma anhand des Micronucleustests am angebrüteten Hühnerei. Inauguraldissertation, Universitätsmedizin der Ernst-Moritz-Arndt-Universität Greifswald

    Google Scholar 

  • Giorgiou M (2015) Oxidative stress and the unfulfilled promises of antioxidant agents. ecancer 9: 556

    Google Scholar 

  • Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45: 263001

    Article  Google Scholar 

  • Graves DB (2014a) Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clin Plasma Med 2: 38–49

    Article  Google Scholar 

  • Graves DB (2014b) Reactive Species from Cold Atmospheric Plasma: Implications for Cancer Therapy. Plasma Process Polym 11: 1120–1127

    Article  CAS  Google Scholar 

  • Haertel B, Hähnel M, Blackert S, Wende K, von Woedtke T, Lindequist U (2012) Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma. Cell Biol Int 36: 1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Haertel B, von Woedtke T, Weltmann KD, Lindequist U (2014) Physical plasma – possible application in wound healing. Biomol Ther 22: 477–490

    Article  CAS  Google Scholar 

  • Hasse S, Hahn O, Kindler S, von Woedtke T, Metelmann HR, Masur K (2014) Atmospheric Pressure Plasma Jet Application on Human Oral Mucosa Modulates Tissue Regeneration. Plasma Med 4: 117–1129

    Article  Google Scholar 

  • Hasse S, Tran T, Hahn O, Kindler S, Metelmann HR, von Woedtke T, Masur K (2015) Induction of proliferation of basal epidermal keratinocytes by cold atmospheric pressure plasma. Clin Exp Dermatol 41: 202–209

    Article  PubMed  Google Scholar 

  • Heinlin J, Isbary G, Stolz W, Morfill G, Landthaler M, Shimizu T, Steffes B, Nosenko T, Zimmermann JL, Karrer S (2011) Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol 25: 1–11

    Article  CAS  Google Scholar 

  • Jameson JM, Sharp LL, Witherden DA, Havran WL (2004) Regulation of skin cell homeostasis by gamma delta T cells. Front Biosci 9: 2640–2651

    Article  CAS  PubMed  Google Scholar 

  • Kalghatgi S, Friedman G, Fridman A, Morss Clyne A (2010) Endothelial Cell Proliferation is Enhanced by Low Dose Non-Thermal Plasma Through Fibroblast Growth Factor-2 Release. Ann Biomed Eng 38: 748–757

    Article  PubMed  Google Scholar 

  • Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Brit J Cancer 105: 1295–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer A, Reichwagen S, Heldt P, Widulle H, Nürnberg W (2008a) 45. Oxidanzien, 45.3.1. Wasserstoffperoxid. In: Kramer A, Assadian O (Hrsg) Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung, Thieme, Stuttgart, S 719–725

    Google Scholar 

  • Kramer A, Hübner NO, Weltmann KD, Lademann J, Ekkernkamp A, Hinz P, Assadian O (2008b) Polypragmasia in the therapy of infected wounds – conclusions drawn from the perspectives of low temperature plasma technology for plasma wound therapy. GMS Krankenhaushyg Interdiszip 3: Doc13

    Google Scholar 

  • Lendeckel D, Eymann C, Emicke P, Daeschlein G, Darm K, O’Neil S, Beule AG, von Woedtke T, Völker U, Weltmann KD, Jünger M, Hosemann W, Scharf C (2015) Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing. BioMed Res Int: 06059

    Google Scholar 

  • Lloyd G, Friedman G, Jafri S, Schultz G, Fridman A, Harding K (2010) Gas plasma. Medical uses and developments in wound care. Plasma Process Polym 7: 194–211

    Article  CAS  Google Scholar 

  • Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol 53: 401–426

    Article  CAS  Google Scholar 

  • Martines E, Brun P, Brun P, Cavazzana R, Deligianni V, Leonardi A, Tarricone E, Zuin M (2013) Towards a plasma treatment of corneal infections. Clin Plasma Med 1(2): 17–24

    Article  Google Scholar 

  • Mast BA, Schultz GS (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 4: 411–420

    Article  CAS  PubMed  Google Scholar 

  • Metelmann HR, Vu TT, Do HT, Le TNB, Hoang THA, Phi TTT, Luong TML, Doan VT, Nguyen TTH, Nguyen THM, Le DQ, Le TKX, von Woedtke T, Bussiahn R, Weltmann KD, Khalili R, Podmelle F (2013) Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation. Clin Plasma Med 1: 30–35

    Article  Google Scholar 

  • Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26: 610–617

    Article  CAS  PubMed  Google Scholar 

  • OECD (1997) Test No. 476: In vitro Mammalian Cell Gene Mutation Test. Guidelines fort he Testing of chemicals, Section 4, OECD Publishing, Paris. doi: http://dx.doi.org/10.1787/9789264071322-en

  • Oehmigen K, Winter J, Hähnel M, Wilke C, Brandenburg R, Weltmann KD, von Woedtke T (2011) Estimation of Possible Mechanisms of Escherichia coli Inactivation by Plasma Treated Sodium Chloride Solution. Plasma Process Polym 8: 904–913

    Article  CAS  Google Scholar 

  • Park GY, Park SJ, Choi MY, Koo IG, Byun JH, Hong JW, Sim JY, Collins GJ, Lee JK (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21: 043001

    Article  Google Scholar 

  • Partecke LI, Evert K, Haugk J, Doering F, Normann L, Diedrich S, Weiss FU, Evert M, Hübner NO, Guenther C, Heidecke CD, Kramer A, Bussiahn R, Weltmann KD, Pati O, Bender C, von Bernstorff W (2012) Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 12: 473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care 3: 445–464

    Article  Google Scholar 

  • plasmatis Initiative Group (2008) Declaration of the 1st International Workshop on Plasma Tissue Interactions. GMS Krankenhaushyg Interdiszip 3: Doc01

    Google Scholar 

  • Portou MJ, Baker D, Abraham D, Tsui J (2015) The innate immune system, toll-like receptors and dermal wound healing: A review. Vasc Pharmacol 71: 31–36

    Article  CAS  Google Scholar 

  • Raiser J, Zenker M (2006) Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys 39: 3520–3523

    Article  CAS  Google Scholar 

  • Ratovitski EA, Cheng X, Yan D, Sherman JH, Canady J, Trink B, Keidar M (2014) Anti-Cancer Therapies of 21st Century: Novel Approach to Treat Human Cancers Using Cold Atmospheric Plasma. Plasma Process Polym 11: 1128–1137

    Article  CAS  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24: 981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristow M, Schmeisser K (2014) Mitohormesis: Promoting health and lifespan by increased levels of rective oxygen species (ROS). Dose-Response 12: 288–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlegel J, Köritzer J, Boxhammer V (2013) Plasma in cancer treatment. Clin Plasma Med 1(2): 2–7

    Article  Google Scholar 

  • Schmidt A, Wende K, Bekeschus S, Bundscherer L, Barton A, Ottmüller K, Weltmann KD, Masur K (2013a) Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radical Res 47: 577–592

    Article  CAS  Google Scholar 

  • Schmidt A, von Woedtke T, Weltmann KD, Masur K (2013b) Identification of the molecular basis of non-thermal plasma-induced changes in human keratinocytes. Plasma Med 3: 15–25

    Article  Google Scholar 

  • Schmidt A, Dietrich S, Steuer A, Weltmann KD, von Woedtke T, Masur K, Wende K (2015a) Non-Thermal Plasma Activates Human Keratinocytes by Stimulation of Antioxidant and Phase II Pathways. J Biol Chem 290: 6731–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Bekeschus S, von Woedtke T, Hasse S (2015b) Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clin Plasma Med 3: 24–31

    Article  Google Scholar 

  • Sen CK (2009) Wound healing essentials: Let there be oxygen. Wound Repair Regen 17: 1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen CK, Roy S (2008) Redox signals in wound healing. Biochim Biophys Acta 1780: 1348–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffels E (2007) „Tissue Processing“ with Atmospheric Plasmas. Contrib Plasma Phys 47: 40–48

    Article  CAS  Google Scholar 

  • Stoffels E, Kieft IE, Sladek REJ (2003) Superficial treatment of mammalian cells using plasma needle. J Phys D Appl Phys 36: 2908–2913

    Article  CAS  Google Scholar 

  • Tanaka H, Mizuno M, Ishikawa K, Kondo H, Takeda K, Hashizume H, Nakamura K, Utsumi F, Kajiyama H, Kano H, Okazaki Y, Toyokuni S, Akiyama S, Maruyama S, Yamada S, Kodera Y, Kaneko H, Terasaki H, Hara H, Adachi T, Iida M, Yajima I, Kato M, Kikkawa F, Hori M (2015) Plasma with high electron density and plasma-activated medium for cancer treatment. Clin Plasma Med 3: 72–76

    Article  Google Scholar 

  • Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F (2013) Effect of Indirect Nonequilibrium Atmospheric Pressure Plasma on Anti-Proliferative Activity against Chronic Chemo-Resistant Ovarian Cancer Cells In Vitro and In Vivo. PLOS ONE 8: e81576

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle JM, Le Pape A (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130: 2185–2194

    Article  CAS  PubMed  Google Scholar 

  • von Woedtke T, Reuter S, Masur K, Weltmann KD (2013a) Plasmas for medicine. Phys Rep 530: 291–320

    Article  Google Scholar 

  • von Woedtke T, Metelmann HR, Weltmann KD (2013b) Editorial. Clin Plasma Med 1: 1–2

    Article  Google Scholar 

  • von Woedtke T, Haertel B, Weltmann KD, Lindequist U (2013c) Plasma pharmacy –physical plasma in pharmaceutical applications. Pharmazie 68: 492–498

    Google Scholar 

  • von Woedtke T, Metelmann HR, Weltmann KD (2014) Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma. Contrib Plasma Phys 54: 104–117

    Article  Google Scholar 

  • Weltmann KD, von Woedtke T (2011a) Campus PlasmaMed – From Basic Research to Clinical Proof. IEEE Trans Plasma Sci 39: 1015–1025

    Article  Google Scholar 

  • Weltmann KD, von Woedtke T (2011b) Basic requirements for plasma sources in medicine. Eur Phys J Appl Phys 55: 13807

    Article  Google Scholar 

  • Weltmann KD, Kindel E, von Woedtke T, Hähnel M, Stieber M, Brandenburg R (2010) Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure Appl Chem 82: 1223–1237

    Article  CAS  Google Scholar 

  • Weltmann KD, Polak M, Masur K, von Woedtke T, Winter J, Reuter S (2012) Plasma processes and plasma sources in medicine. Contrib Plasma Phys 52: 644–654

    Article  Google Scholar 

  • Wende K, Reuter S, von Woedtke T, Weltmann KD, Masur K (2014a) Redox-Based Assay for Assessment of Biological Impact of Plasma Treatment. Plasma Process Polym 11: 655–663

    Article  CAS  Google Scholar 

  • Wende K, Straßenburg S, Haertel B, Harms M, Holtz S, Barton A, Masur K, von Woedtke T, Lindequist U (2014b) Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biol Int 38: 412–425

    Article  CAS  PubMed  Google Scholar 

  • Wende K, Bekeschus S, Schmidt A, Jatsch L, Hasse S, Masur K, von Woedtke T (2016) Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat Res Genet Toxicol Environ Mutagen 798: 48–54

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Woedtke, T., Schmidt, A., Bekeschus, S., Wende, K. (2016). Wissenschaftliche Grundlagen, Stand und Perspektiven der Plasmamedizin. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Plasmamedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52645-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52645-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52644-6

  • Online ISBN: 978-3-662-52645-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics