Skip to main content

Anwendungsmöglichkeiten in der Kieferorthopädie

  • Chapter
  • First Online:
  • 1590 Accesses

Zusammenfassung

Die Kieferorthopädie befasst sich als Teilgebiet der Zahn-, Mund- und Kieferheilkunde mit der Prävention, Diagnose und Behandlung von Anomalien und Fehlfunktionen im dentofazialen und stomatognathen System. „Plasma-Kieferorthopädie“ ist ein Anwendungsbereich der Plasmamedizin für den derzeit kaum konkrete Forschungsergebnisse vorhanden sind. Allerdings lässt sich das große Potential, das für cold atmospheric pressure plasma (CAP) bereits in anderen zahnmedizinischen Disziplinen bewiesen werden konnte, auch auf Aspekte der Kieferorthopädie übertragen. Anwendungsmöglichkeiten von CAP in der Kieferorthopädie lassen sich momentan vor allem von drei Eigenschaften des CAP ableiten: Antimikrobielle Wirksamkeit, Oberflächenbearbeitung, Wundheilung.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Aas JA, Paster BJ, Stokes LN et al. (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11): 5721–5732

    Article  PubMed  PubMed Central  Google Scholar 

  • Addy M, Shaw W, Hansford P et al. (1982) The effect of orthodontic appliances on the distribution of Candida and plaque in adolescents. Br J Orthod 9(3): 158–163

    Article  CAS  PubMed  Google Scholar 

  • Algera TJ, Kleverlaan CJ, de Gee AJ et al. (2005) The influence of accelerating the setting rate by ultrasound or heat on the bond strength of glass ionomers used as orthodontic bracket cements. Eur J Orthod 27(5): 472–476

    Article  CAS  PubMed  Google Scholar 

  • Andrucioli MCD, Nelson-Filho P, Matsumoto MAN et al. (2012) Molecular detection of in-vivo microbial contamination of metallic orthodontic brackets by checkerboard DNA-DNA hybridization. Am J Orthod Dentofacial Orthop 141(1): 24–29

    Article  PubMed  Google Scholar 

  • Antonson SA, Antonson DE, Brener S et al. (2012) Twenty-four month clinical evaluation of fissure sealants on partially erupted permanent first molars: glass ionomer versus resin-based sealant. J Am Dent Assoc 143(2): 115–122

    Article  PubMed  Google Scholar 

  • Arenholt-Bindslev D, Breinholt V, Preiss A et al. (1999) Time-related bisphenol-A content and estrogenic activity in saliva samples collected in relation to placement of fissure sealants. Clin Oral Investig 3(3): 120–125

    Article  CAS  PubMed  Google Scholar 

  • Bakopoulou A, Papadopoulos T, Garefis P (2009) Molecular toxicology of substances released from resin–based dental restorative materials. Int J Mol Sci 10(9): 3861–3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batoni G, Pardini M, Giannotti A et al. (2001) Effect of removable orthodontic appliances on oral colonisation by mutans streptococci in children. Eur J Oral Sci 109(6): 388–392

    Article  CAS  PubMed  Google Scholar 

  • Bjerklin K, Gärskog B, Rönnerman A (1983) Proximal caries increment in connection with orthodontic treatment with removable appliances. Br J Orthod 10(1): 21–24

    Article  CAS  PubMed  Google Scholar 

  • Boyd RL, Baumrind S (1992) Periodontal considerations in the use of bonds or bands on molars in adolescents and adults. Angle Orthod 62(2): 117–1126

    CAS  PubMed  Google Scholar 

  • Busscher HJ, Rinastiti M, Siswomihardjo W et al. (2010) Biofilm formation on dental restorative and implant materials. J Dent Res 89(7): 657–665

    Article  CAS  PubMed  Google Scholar 

  • Cacciafesta V, Jost-Brinkmann P, Süßenberger U et al. (1998) Effects of saliva and water contamination on the enamel shear bond strength of a light-cured glass ionomer cement. Am J Orthod Dentofacial Orthop 113(4): 402–407

    CAS  PubMed  Google Scholar 

  • Chen Y, Chang H, Huang C et al. (2007) A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res 18(6): 768–775

    Article  PubMed  Google Scholar 

  • Chung S, Kwon H, Choi Y et al. (2012) Dental composite fillings and bisphenol A among children: a survey in South Korea. Int Dent J 62(2): 65–69

    Article  PubMed  Google Scholar 

  • Cohen WJ, Wiltshire WA, Dawes C et al. (2003) Long-term in vitro fluoride release and rerelease from orthodontic bonding materials containing fluoride. Am J Orthod Dentofacial Orthop 124(5): 571–576

    Article  PubMed  Google Scholar 

  • Cook PA, Luther F, Youngson CC (1996) An in vitro study of the bond strength of light-cured glass ionomer cement in the bonding of orthodontic brackets. Eur J Orthod 18(2): 199–204

    Article  CAS  PubMed  Google Scholar 

  • Costa A, Raffainl M, Melsen B (1998) Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 13(3): 201–209

    Google Scholar 

  • Czochrowska E, Burzykowski T, Buyukyilmaz T et al. (1999) The effect of long-term water storage on the tensile strength of orthodontic brackets bonded with resin-reinforced glass-lonomer cements. J Orofac Orthop/Fortschritte der Kieferorthopädie 60(5): 361–370

    Article  CAS  PubMed  Google Scholar 

  • Danna NR, Beutel BG, Tovar N et al. (2015) Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration. BioMed Research International: ID 761718

    Google Scholar 

  • Demling A, Elter C, Heidenblut T et al. (2010) Reduction of biofilm on orthodontic brackets with the use of a polytetrafluoroethylene coating. Eur J Orthod 32(4): 414–418

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Huang C, Yu Q (2007) Cold plasma brush generated at atmospheric pressure. Rev Sci Instrum 78(1): 015104

    Article  PubMed  Google Scholar 

  • Dubey R, Jalili VP, Garg S (1993) Oral hygiene and gingival status in orthodontic patients. J Pierre Fauchard Acad 7(2): 43–54

    CAS  PubMed  Google Scholar 

  • Duske K, Jablonowski L, Koban I et al. (2015) Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs. Biomaterials 52: 327–334

    Article  CAS  PubMed  Google Scholar 

  • Endo K, Hashimoto M, Haraguchi K et al. (2010) Crystal growth by restorative filling materials. Eur J Oral Sci 118(5): 489–493

    Article  CAS  PubMed  Google Scholar 

  • Erbe C, Hornikel HS, Schmidtmann I et al. (2011) Quantity and distribution of plaque in orthodontic patients treated with molar bands. J Orofac Orthop/Fortschritte der Kieferorthopädie 72(1): 13–20

    Article  PubMed  Google Scholar 

  • Fabián Molina G, Cabral RJ, Mazzola I et al. (2013) Biaxial flexural strength of high-viscosity glass-ionomer cements heat-cured with an LED lamp during setting. BioMed Res Int 2013

    Google Scholar 

  • Fajen VB, Duncanson MG, Nanda RS et al. (1990) An in vitro evaluation of bond strength of three glass ionomer cements. Am J Orthod Dentofacial Orthop 97(4): 316–322

    Article  CAS  PubMed  Google Scholar 

  • Fricke K, Koban I, Tresp H et al. (2012) Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PloS one 7(8): e42539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaworski M, Weinstein M, Borislow AJ et al. (1999) Decalcification and bond failure: a comparison of a glass ionomer and a composite resin bonding system in vivo. Am J Orthod Dentofacial Orthop 116(5): 518–521

    Article  CAS  PubMed  Google Scholar 

  • Geiger S, Weiner S (1993) Fluoridated carbonatoapatite in the intermediate layer between glass ionomer and dentin. Dent Mater 9(1): 33–36

    Article  CAS  PubMed  Google Scholar 

  • Gjorgievska E, Nicholson JW, Grcev AT (2012) Ion migration from fluoride-releasing dental restorative materials into dental hard tissues. J Mater Sci Mater Med 23(7): 1811–1821

    Article  CAS  PubMed  Google Scholar 

  • Göllner P (2007) Skeletal anchorage in orthodontics–basics and clinical application. J Orofac Orthop/Fortschritte der Kieferorthopädie 68(6): 443–461

    Article  PubMed  Google Scholar 

  • Gorseta K, Glavina D, Skrinjaric I (2012a) Influence of ultrasonic excitation and heat application on the microleakage of glass ionomer cements. Aust Dent J 57(4): 453–457

    Article  CAS  PubMed  Google Scholar 

  • Gorseta K, Skrinjaric T, Glavina D (2012b) The effect of heating and ultrasound on the shear bond strength of glass ionomer cement. Coll Antropol 36(4): 1307–1312

    CAS  PubMed  Google Scholar 

  • Gorseta K, Glavina D, Borzabadi-Farahani A et al. (2014) Oneyear clinical evaluation of a Glass Carbomer fissure sealant, a preliminary study. Eur J Prosthodont Restor Dent 22(2): 67–71

    CAS  PubMed  Google Scholar 

  • Gorynia S, Koban I, Matthes R et al. (2013) In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models. GMS Hyg Infect Control 8(1): Doc01. doi: 10.3205/dgkh000201

  • Hallgren A, Oliveby A, Twetman S (1992) Caries associated microflora in plaque from orthodontic appliances retained with glass ionomer cement. Eur J Oral Sci 100(3): 140–143

    Article  CAS  Google Scholar 

  • Hallgren A, Oliveby A, Twetman S (1993) Fluoride Concentration in Plaque Adjacent to Orthodontic Appliances Retained with Glass lonomer Cement. Caries Res 27(1): 51–54

    Article  CAS  PubMed  Google Scholar 

  • Hallgren A, Oliveby A, Twetman S (1994) L(+)-lactic acid production in plaque from orthodontic appliances retained with glass ionomer cement. Br J Orthod 21(1): 23–26

    Article  CAS  PubMed  Google Scholar 

  • Hibino K, Wong RW, Haegg U et al. (2009) The effects of orthodontic appliances on Candida in the human mouth. Int J Paediatr Dent 19(5): 301–308

    Article  PubMed  Google Scholar 

  • Hoffmann C, Berganza C, Zhang J (2013) Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res 3: 21

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoste S, Vercruyssen M, Quirynen M et al. (2008) Risk factors and indications of orthodontic temporary anchorage devices: a literature review. Aust Orthod J 24(2): 140–148

    PubMed  Google Scholar 

  • Hübner NO, Matthes R, Koban I et al. (2010) Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 23 (Suppl): 28–34

    PubMed  Google Scholar 

  • Idlibi AN, Al-Marrawi F, Hannig M et al. (2013) Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma. Biofouling 29(4): 369–379

    Article  CAS  PubMed  Google Scholar 

  • Ireland A, Soro V, Sprague S et al. (2014) The effects of different orthodontic appliances upon microbial communities. Orthod Craniofac Res 17(2): 115–123

    Article  CAS  PubMed  Google Scholar 

  • Jablonowski H, Hänsch MAC, Dünnbier M et al. (2015) Plasma jet′s shielding gas impact on bacterial inactivation. Biointerphases 10(2): 029506

    Article  PubMed  Google Scholar 

  • Jennings KJ, Samaranayake LP (1991) The persistence of microorganisms on impression materials following disinfection. Int J Prosthodont 4(4): 382–387

    CAS  PubMed  Google Scholar 

  • Kleverlaan CJ, van Duinen RN, Feilzer AJ (2004) Mechanical properties of glass ionomer cements affected by curing methods. Dent Mater 20(1): 45–50

    Article  CAS  PubMed  Google Scholar 

  • Klockowski R, Davis EL, Joynt RB et al. (1989) Bond strength and durability of glass ionomer cements used as bonding agents in the placement orthodontic brackets. Am J Orthod Dentofacial Orthop 96(1): 60–64

    Article  CAS  PubMed  Google Scholar 

  • Koban I, Holtfreter B, Hübner N et al. (2011) Antimicrobial efficacy of non‐thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro–proof of principle experiment. J Clin Periodontol 38(10): 956–965

    Article  CAS  PubMed  Google Scholar 

  • Koban I, Geisel MH, Holtfreter B et al. (2013) Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dent 2013: 573262

    PubMed  PubMed Central  Google Scholar 

  • Krupinska-Nanys M, Zarzecka J (2015) An Assessment of Oral Hygiene in 7-14-Year-Old Children undergoing Orthodontic Treatment. J Int Oral Health 7(1): 6–11

    PubMed  PubMed Central  Google Scholar 

  • Kupietzky A, van Duinen R (2015) Report on the clinical technique of thermo-curing glass-ionomer sealant. Quintessence Int 46(8): 699–705

    Google Scholar 

  • Lessa FCR, Enoki C, Ito IY et al. (2007) In-vivo evaluation of the bacterial contamination and disinfection of acrylic baseplates of removable orthodontic appliances. Am J Orthod Dentofacial Orthop 131(6): 705.e11–7

    Article  Google Scholar 

  • Liu H, Sun J, Dong Y et al. (2011) Periodontal health and relative quantity of subgingival Porphyromonas gingivalis during orthodontic treatment. Angle Orthod 81(4): 609–615

    Article  PubMed  Google Scholar 

  • Lombardo L, Ortan YÖ, Gorgun Ö et al. (2013) Changes in the oral environment after placement of lingual and labial orthodontic appliances. Prog Orthod 14(1): 1–8

    Article  Google Scholar 

  • Mahasneh A, Darby M, Tolle SL et al. (2011) Inactivation of Porphyromonas gingivalis by low-temperature atmospheric pressure plasma. Plasma Med 1(3–4): 191–204

    Article  Google Scholar 

  • Malkiewicz K, Turlo J, Marciniuk-Kluska A et al. (2015) Release of bisphenol A and its derivatives from orthodontic adhesive systems available on the European market as a potential health risk factor. Ann Agric Environ Med 22(1): 172–177

    Article  PubMed  Google Scholar 

  • Mandava Prasad SM, Nayak K, Shetty SK et al. (2014) Effect of moisture, saliva, and blood contamination on the shear bond strength of brackets bonded with a conventional bonding system and self-etched bonding system. J Nat Sci Biol Med 5(1): 123

    Article  PubMed  PubMed Central  Google Scholar 

  • Martignon S, Ekstrand KR, Lemos MI et al. (2010) Plaque, caries level and oral hygiene habits in young patients receiving orthodontic treatment. Community Dent Health 27(3): 133–138

    CAS  PubMed  Google Scholar 

  • Matthes R, Bender C, Schlüter R et al. (2013) Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms. PloS one 8(7): e70462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthes R, Assadian O, Kramer A (2014) Repeated applications of cold atmospheric pressure plasma does not induce resistance in Staphylococcus aureus embedded in biofilms. GMS Hyg Infect Control 9(3): Doc17. doi: 10.3205/dgkh000237

  • Matthes R, Jablonowski L, Koban I et al. (2015) In vitro treatment of Candida albicans biofilms on denture base material with volume dielectric barrier discharge plasma (VDBD) compared with common chemical antiseptics. Clin Oral Investig: 1–8

    Google Scholar 

  • Miethke R, Brauner K (2007) A comparison of the periodontal health of patients during treatment with the Invisalign® system and with fixed lingual appliances. J Orofac Orthop/Fortschritte der Kieferorthopädie 68(3): 223–231

    Article  PubMed  Google Scholar 

  • Miguel JAM, Almeida MA, Chevitarese O (1995) Clinical comparison between a glass ionomer cement and a composite for direct bonding of orthodontic brackets. Am J Orthod Dentofacial Orthop 107(5): 484–487

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi E (1982) Success and failure of banding and bonding: a clinical study. Angle Orthod 52(2): 113–117

    CAS  PubMed  Google Scholar 

  • Mosci F, Perito S, Bassa S et al. (1990) The role of Streptococcus mutans in human caries. Minerva Stomatol 39(5): 413–429

    CAS  PubMed  Google Scholar 

  • Motoyoshi M (2011) Clinical indices for orthodontic mini-implants. J Oral Sci 53(4): 407–412

    Article  PubMed  Google Scholar 

  • Newman GV (1965) Epoxy adhesives for orthodontic attachments: progress report. Am J Orthod 51(12): 901–912

    Google Scholar 

  • Newman GV (1978) A posttreatment survey of direct bonding of metal brackets. Am J Orthod 74(2): 197–206

    Article  CAS  PubMed  Google Scholar 

  • Ngo HC, Mount G, Mc Intyre J et al. (2006) Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent 34(8): 608–613

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JW, Braybrook JH, Wasson EA (1991) The biocompatibility of glass-poly (alkenoate) (Glass-Ionomer) cements: A review. Journal of Biomaterials Science, Polymer Edition 2(4): 277–285

    CAS  PubMed  Google Scholar 

  • Omori M, Tsuchiya S, Hara K et al. (2015) A new application of cell-free bone regeneration: immobilizing stem cells from human exfoliated deciduous teeth-conditioned medium onto titanium implants using atmospheric pressure plasma treatment. Stem Cell Res Ther 6: 124

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozcelik O, Haytac MC, Akkaya M (2005) Iatrogenic trauma to oral tissues. J Periodontol 76(10): 1793–1797

    Article  PubMed  Google Scholar 

  • Park H, Jeong S, Kwon O (2006) Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 130(1): 18–25

    Article  PubMed  Google Scholar 

  • Pascotto RC, de Lima Navarro, Maria Fidela, Capelozza Filho L et al. (2004) In vivo effect of a resin-modified glass ionomer cement on enamel demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop 125(1): 36–41

    Article  PubMed  Google Scholar 

  • Passariello C, Gigola P (2013) Adhesion and biofilm formation by oral streptococci on different commercial brackets. Eur J Paediatr Dent 14(2): 125–130

    CAS  PubMed  Google Scholar 

  • Pathak A, Sharma D (2013) Biofilm associated microorganisms on removable oral orthodontic appliances in children in the mixed dentition. J Clin Pediatr Dent 37(3): 335–340

    Article  CAS  PubMed  Google Scholar 

  • Pithon MM, dos Santos RL, de Oliveira MV et al. (2006) Metallic brackets bonded with resin-reinforced glass ionomer cements under different enamel conditions. Angle Orthod 76(4): 700–704

    PubMed  Google Scholar 

  • Rego RO, Oliveira CA, dos Santos-Pinto A et al. (2010) Clinical and microbiological studies of children and adolescents receiving orthodontic treatment. Am J Dent 23(6): 317–323

    PubMed  Google Scholar 

  • Ren Y, Jongsma MA, Mei L et al. (2014) Orthodontic treatment with fixed appliances and biofilm formation—a potential public health threat? Clin Oral Investig 18(7): 1711–1718

    Article  PubMed  Google Scholar 

  • Rupf S, Lehmann A, Hannig M et al. (2010) Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol 59(Pt2): 206–212

    Article  PubMed  Google Scholar 

  • Rupf S, Idlibi AN, Marrawi FA et al. (2011) Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. PloS one 6(10): e25893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos BM, Pithon MM, Ruellas, Antonio Carlos de Oliveira et al. (2010) Shear bond strength of brackets bonded with hydrophilic and hydrophobic bond systems under contamination. Angle Orthod 80(5): 963–967

    Article  PubMed  Google Scholar 

  • Sasanaluckit P, Albustany K, Doherty P et al. (1993) Biocompatibility of glass ionomer cements. Biomaterials 14(12): 906–916

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Song K, Zhou X et al. (2015) Effects of non‐equilibrium plasma in the treatment of ligature‐induced peri‐implantitis. J Clin Periodontol 42(5): 478–487

    Article  CAS  PubMed  Google Scholar 

  • Sidhu SK, Schmalz G (2001) The biocompatibility of glass-ionomer cement materials. A status report for the American Journal of Dentistry. Am J Dent 14(6): 387–396

    Google Scholar 

  • Silverman E, Cohen M, Demke RS et al. (1995) A new light-cured glass ionomer cement that bonds brackets to teeth without etching in the presence of saliva. Am J Orthod Dentofacial Orthop 108(3):231–236

    Article  CAS  PubMed  Google Scholar 

  • Söderholm K, Mariotti A (1999) BIS-GMA-based resins in dentistry: are they safe? J Am Dent Assoc 130(2): 201–209

    Article  PubMed  Google Scholar 

  • Sung S, Huh J, Yun M et al. (2013) Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments. J Adv Prosthodont 5(1): 2–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Swartz ML, Phillips RW, Clark HE (1984) Long-term F release from glass ionomer cements. J Dent Res 63(2): 158–160

    Article  CAS  PubMed  Google Scholar 

  • Teixeira HS, Coelho PG, Duarte S et al. (2015) Influence of atmospheric pressure plasma treatment on mechanical proprieties of enamel and sealant bond strength. J Biomed Mater Res B Appl Biomater 103(5): 1082–1091

    Article  CAS  PubMed  Google Scholar 

  • ten Cate JM, van Duinen RN (1995) Hypermineralization of dentinal lesions adjacent to glass-ionomer cement restorations. J Dent Res 74(6): 1266–1271

    Article  PubMed  Google Scholar 

  • Tufekci E, Dixon JS, Gunsolley J et al. (2011) Prevalence of white spot lesions during orthodontic treatment with fixed appliances. Angle Orthod 81(2): 206–210

    Article  PubMed  Google Scholar 

  • Van der Veen M, Attin R, Schwestka‐Polly R et al. (2010) Caries outcomes after orthodontic treatment with fixed appliances: do lingual brackets make a difference? Eur J Oral Sci 118(3): 298–303

    Article  PubMed  Google Scholar 

  • van Gastel J, Quirynen M, Teughels W et al. (2011) Longitudinal changes in microbiology and clinical periodontal parameters after removal of fixed orthodontic appliances. Eur J Orthod 33(1): 15–21

    Article  PubMed  Google Scholar 

  • Völkel W, Colnot T, Csanády GA et al. (2002) Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 15(10): 1281–1287

    Article  PubMed  Google Scholar 

  • von Woedtke T, Haertel B, Weltmann K et al. (2013) Plasma pharmacy–physical plasma in pharmaceutical applications. Pharmazie 68(7): 492–498

    Google Scholar 

  • Vorhies AB, Donly KJ, Staley RN et al. (1998) Enamel demineralization adjacent to orthodontic brackets bonded with hybrid glass ionomer cements: an in vitro study. Am J Orthod Dentofacial Orthop 114(6): 668–674

    Article  CAS  PubMed  Google Scholar 

  • Wilson RM, Donly KJ (2001) Demineralization around orthodontic brackets bonded with resin-modified glass ionomer cement and fluoride-releasing resin composite. Pediatr Dent 23(3): 255–259

    CAS  PubMed  Google Scholar 

  • Wites M, Panuszka J, Dyras M (2003) Evaluation of oral and orthodontic appliance hygiene in orthodontically treated patients. Przegl Lek 60 Suppl 6: 126–128

    PubMed  Google Scholar 

  • Yang B, Chen J, Yu Q et al. (2011) Oral bacterial deactivation using a low-temperature atmospheric argon plasma brush. J Dent 39(1): 48–56

    Article  CAS  PubMed  Google Scholar 

  • ZhangY, YuQ, WangY (2014) Non-thermal atmospheric plasmas in dental restoration: Improved resin adhesive penetration. J Dent42(8): 1033–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Metelmann, P., Ong, H., Krey, K.F. (2016). Anwendungsmöglichkeiten in der Kieferorthopädie. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Plasmamedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52645-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52645-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52644-6

  • Online ISBN: 978-3-662-52645-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics