Skip to main content

Aktueller und perspektivischer Einsatz kalter Plasmen aus hygienischer Indikation

  • Chapter
  • First Online:
Book cover Plasmamedizin

Zusammenfassung

Kalte Plasmen zeigen eine hohe Wirksamkeit gegen Mikroorganismen und Viren sowie gegen bakterielle und fungielle Biofilme bei gleichzeitiger Verträglichkeit für die Körperoberfläche sowie für unbelebte Materialien. Darüber hinaus besteht die Möglichkeit der gezielten Modifikation der Eigenschaften von Mikroorganismen. Polymere und metallische Oberflächen werden durch Plasmabehandlung in ihrer Hydrophobizität verändert; zugleich können Beschichtungen aufgebracht werden. Durch inflammatorische Reize, Förderung der Angiogenese und der Proliferation von Fibroblasten, Keratinozyten und Osteoblasten werden Heilungsprozesse in Gang gesetzt.

Folgende Hygieneanwendungen sind etabliert bzw. zeichnen sich als aussichtsreich ab: Sterilisation, Dekontamination von Medizinprodukten, Lebensmitteln, Verpackungsmaterialien, Boden, Abwasser und Raumluft. Perspektivische Anwendungen beinhalten die Leistungsoptimierung biotechnologisch eingesetzter Mikroorganismen, die Verbesserung der Biokompatibilität und -funktionalität von Implantatoberflächen und die Impfstoffherstellung. Auf der Körperoberfläche steht die Wundbehandlung im Fokus. Präoperative Hautantiseptik, Antiseptik in der Mundhöhle und die Inaktivierung von Parasiten sind mögliche zukünftige Einsatzbereiche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aboubakr HA, Williams P; Gangal U et al. (2015) Virucidal effect of cold atmospheric gaseous plasma against 2 feline calicivirus, a surrogate to human norovirus. Appl Environ Microbiol 81(11): 3612–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlfeld B, Li Y, Boulaaba A, Binder A et al. (2015) Inactivation of a foodborne norovirus outbreak strain with nonthermal atmospheric pressure plasma. mBio 6(1): e02300-14

    Article  CAS  Google Scholar 

  • Ahn HJ, Kim KI, Kim G et al. (2011) Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One 6(11): e28154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arjunan KP, Clyne AM (2011) A nitric oxide producing pin-to-hole spark discharge plasma enhances endothelial cell proliferation and migration. Plasma Med 1(3–4): 279–293

    Article  Google Scholar 

  • Arjunan KP, Sharma VK, Ptasinska S (2015) Effects of atmospheric pressure plasmas on isolated and cellular DNA – a review. Int J Mol Sci 16(2): 2971–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baier M, Foerster J, Schnabel U et al. (2013) Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: Evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biol Tec 84: 81–87

    Article  CAS  Google Scholar 

  • Baier M, Gorgen M, Ehlbeck J et al. (2014) Non-thermal atmospheric pressure plasma: Screening for gentle process condidtions and antibacterial efficiency on perishable fresh produce. Innov Food Sci emerg 22: 147–157

    Article  CAS  Google Scholar 

  • Bailey C, Pemmaraju K, Phan M et al. (2014) Development of nonthermal plasma-assisted hand sanitization. Plasma Med 4(1–4): 221–230

    Article  Google Scholar 

  • Bailin LJ, Hertzler BL, Oberacker DA (1978) Development of microwave plasma detoxification process for hazardous wastes. Part I. Environ Sci Technol 12 (6): 673–679

    Article  CAS  Google Scholar 

  • Balasundaram A, Alexeff I, Sawhney RS (2011) Design of experiment-based testing of air, charged ions, and hydrogen peroxide in a direct current steady-state plasma sterilizer. Plasma Med 1(3–4): 179–189

    Article  Google Scholar 

  • Balkanyi A (1996) Vorrichtung und Verfahren zur Luftaufbereitung. Patent EP 0 707 1 78 A2

    Google Scholar 

  • Banaschik R, Koch F, Kolb JF et al. (2014) Decomposition of pharmaceuticals by pulsed corona discharges in water depending on streamer length. IEEE Trans Plasma Sci 42: 2736

    Article  CAS  Google Scholar 

  • Banaschik R, Lukes P, Jablonowski H et al. (2015) Potential of pulsed corona discharges generated in water for the degradation of persistent pharmaceutical residues. Water Res 1 (84): 127–135

    Article  CAS  Google Scholar 

  • Bekeschus S, von Woedtke T, Kramer A et al. (2013a) Cold physical plasma treatmet alters redox balance in human immune cells. Plasma Med 3(4): 267–278

    Article  Google Scholar 

  • Bekeschus S, Müller A, Kolata J et al. (2013b) Differential viability of eight human blood mononuclear cell subpopulations after plasma treatment. Plasma Med 3(1–2): 1–13

    Article  Google Scholar 

  • Below H, Partecke I, Hübner N et al. (2012) Dermal and pulmonary absorption of propan-1-ol and propan-2-ol from hand rubs. Am J Infect Contr 40(3): 250–257

    Article  CAS  Google Scholar 

  • Bender C, Kramer A (2014) Efficacy of Tissue Tolerable Plasma (TTP) against Ixodes ricinus. GMS Hyg Infect Contr; 9 (1): Doc04

    Google Scholar 

  • Bender C, Partecke L, Kindel E et al. (2011) The modified HET-CAM as a model for the assessment of the inflammatory response to tissue tolerable plasma. Toxicol in Vitro 25: 530–537

    Article  CAS  PubMed  Google Scholar 

  • Bender C, Hübner NO, Weltmann KD et al. (2012) Tissue tolerable plasma and polihexanide: Are synergistic effects possible to promote healing of chronic wounds? In vivo and in vitro results In: Machala Z, Hendsel K, Akishev Y (Hrsg) Plasma for Bio-Decontamination, Medicine and Food Security; NATO Science for Peace and Security Series – A: Chemistry and Biology. Springer, Dordrecht, S 312–314

    Google Scholar 

  • Bergemann C, Quade A, Kunz F et al. (2012) Ammonia plasma functionalized polycarbonate surfaces improve cell migration inside an artificial 3D cell culture module. Plasma Proc Polym 9: 261–272

    Article  CAS  Google Scholar 

  • Boxhammer V, Li Y, Köritzer J, Shimizu T et al. (2013) Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mut Res 753 (1): 23–28

    Article  CAS  Google Scholar 

  • Brandenburg R, Ehlbec J, Stieber M et al. (2007) Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure rf-driven plasma jet. Contrib Plasm Phys 47(1–2): 72–79

    Article  CAS  Google Scholar 

  • Brandenburg, R, Kovacevic VV, Schmidt M et al. (2014) Plasma-based pollutant degradation in gas streams: status, examples and outlook. Contrib Plasma Phys 54(2): 202–214

    Article  CAS  Google Scholar 

  • Brisset J, Benstaali B, Moussa D et al. (2011) Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation. Plasma Sources Sci Technol 20(3): 034021

    Article  CAS  Google Scholar 

  • Cheng X, Sherman J, Murphy W et al. (2014) The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS ONE 9(5): e98652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiper AS, Chen W, Mejlholm O et al. (2011) Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples. Plasma Sourc Sci Technol 20(2): 1–10

    Article  CAS  Google Scholar 

  • Coleman J, Yost A, Goren R et al. (2011) Nonthermal atmospheric pressure plasma decontamination of protein-loaded biodegradable nanoparticles for nervous tissue repair. Plasma Med 1(3–4): 215–230

    Article  Google Scholar 

  • Daeschlein G, Assadian O, Kloth LC et al. (2007) Antibacterial activity of positive and negative polarity low-voltage pulsed current (LVPC) on six typical Gram-positive and Gram-negative bacterial pathogens of chronic wounds. Wound Repair Regen 15(3): 399–403

    Article  PubMed  Google Scholar 

  • Daeschlein G, Woedtke T von, Kindel E et al. (2010a) Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Proc Polym 7(3–4): 224–230

    Article  CAS  Google Scholar 

  • Daeschlein G, Scholz S, Arnold A et al. (2010b) In vitro activity of atmospheric pressure plasma jet (appj) plasma against clinical isolates of demodex folliculorum. IEEE Trans Plasma Sci 38(10): 2969–2973

    Article  Google Scholar 

  • Daeschlein G, Scholz S, Woedtke T von et al. (2011) In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. Plasma Sci IEEE Transact 39(2): 815–821

    Article  Google Scholar 

  • Daeschlein G, Scholz S, Ahmed R et al. (2012a) Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Inf 81(3): 177–183

    Article  CAS  Google Scholar 

  • Daeschlein G, Scholz S, Emmert S et al. (2012b) Plasma medicine in dermatology: basic antimicrobial efficacy testing as prerequisite to clinical plasma therapy. Plasma Med 2(1–3): 33–69

    Article  Google Scholar 

  • Daeschlein G, Napp M, Podewils S von et al. (2014) In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Proc Polym 11(2): 175–183

    Article  CAS  Google Scholar 

  • Deilmann M, Halfmann H, Bibinov N et al. (2008) Low pressure microwave plasma sterilization of polyethylene terephthalate bottles. J Food Protect 71(10): 2119–2123

    CAS  Google Scholar 

  • Delben JA, Murata RM, Wei X et al. (2014) Low-temperature plasma: An effective approach against Candida albicans biofilm. Plasma Med 4(1–4): 231–244

    Article  Google Scholar 

  • Dong XY, Xiu ZL, Hou YM et al. (2009) Enhanced production of 1.3-propanediol in Klebsiella pneumoniae induced by dielectric barrier discharge plasma in atmospheric air. IEEE Trans Plasma Sci 37: 920–926

    Article  CAS  Google Scholar 

  • Dong XY, Yuan Y, Tang Q et al. (2014) Parameter optimization for enhancement of ethanol yield by atmospheric pressure DBD-treated saccharomyces cerevisiae. Plasma Sci Technol 2014 16(1): 73–76

    Article  CAS  Google Scholar 

  • Duske K, Koban I, Kindel E et al. (2012) Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol 39: 400–407

    Article  CAS  PubMed  Google Scholar 

  • Ehlbeck J, Brandenburg R, Woedtke von T et al. (2008) PLASMOSE – antimicrobial effects of modular atmospheric plasma sources. GMS Krankenhaushyg Interdisz 3 (1): Doc14

    Google Scholar 

  • Ehlbeck J, Schnabel U, Polak M et al. (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44: 013002

    Article  CAS  Google Scholar 

  • El Shaer M, Mobasher M, Abdelghany A (2014) Treatment of microorganisms in vegetables and fruits by gliding arc. Plasma Med 4(1–4): 57–65

    Article  Google Scholar 

  • Fang M, Jin L, Zhang C et al. (2013) Rapid mutation of spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (artp) and generation of a mutant library with diverse phenotypes. PLoS ONE 8(10): e77046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finke B, Luethen F, Schroeder K et al. (2007) The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials 28 (30): 4521–4534

    Article  CAS  PubMed  Google Scholar 

  • Finke B, Schroeder K, Luethen F, et al (2008) Plasma polymer coating of titanium for improved bone implants. 14th Nordic-Baltic Conf on Biomedical Engineering and Medical Physics. IFMBE Proc Springer 20: 30–33

    Article  Google Scholar 

  • Finke B, Hempel F,Testrich H et al. (2011) Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf Coat Technol 205: S520–S524

    Article  CAS  Google Scholar 

  • Finke B, Polak M, Hempel F et al. (2012) Antimicrobial potential of copper-containing titanium surfaces generated by ion implantation and dual high power impulse magnetron sputtering. Adv Eng Mater 14 (5): B224–B230

    Article  CAS  Google Scholar 

  • Finke B, H. Testrich H, H. Rebl H et al. (2014) Anti-adhesive finishing of temporary implant surfaces by a plasma-fluorocarbon-polymer. Materials Sci Forum 783–786: 1238–1243

    Article  CAS  Google Scholar 

  • Fluhr JW, Sassning S, Lademann O et al. (2012) In vivo skin treatment with tissue tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp Dermatol 21(2): 130–134

    Article  PubMed  Google Scholar 

  • Foest R, Kindel E, Ohl A et al. (2005) Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys Contr Fusion 47(12B): B525–B536

    Article  CAS  Google Scholar 

  • Fricke K, Tresp H, Bussiahn R et al. (2012a) On the use of atmospheric pressure plasma for the bio-decontamination of polymers and its impact on their chemical and morphological surface properties. Plasma Chem Plasma Proc 32: 801–816

    Article  CAS  Google Scholar 

  • Fricke K, Koban I, Tresp H et al. (2012b) Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms. PLoS One 7: e42539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fröhling A, Baier M, Ehlbeck J et al. (2012a) Atmospheric pressure plasma treatment of Listeria innocua and Escherichia coli at polysaccharide surfaces: Inactivation kinetics and flow cytometric characterization. Innov Food Sci Emerg Technol 13: 142–150

    Article  CAS  Google Scholar 

  • Fröhling A, Durek J, Schnabel U et al. (2012b) Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innov Food Sci Emerg Technol 16: 381–390

    Article  CAS  Google Scholar 

  • Gabler C, Zietz C, Gohler R et al. (2014) Evaluation of osseointegration of titanium alloyed implants modified by plasma polymerization. Int J Mol Sci 15: 2454–2464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Alcantara E, López-Callejas R, Morales-Ramírez PR et al. (2013a) Accelerated mice skin acute wound healing in vivo by combined treatment of argon and helium plasma needle. Arch Med Res 44(3): 169–177

    Article  PubMed  Google Scholar 

  • Garcia-Alcantara E, Lopez-Callejas R, Serment-Guerrero J et al. (2013b) Toxicity and genotoxicity in HELA and E. coli cells caused by a helium plasma needle. Appl Phys Res 5 (5): 21–28

    Article  CAS  Google Scholar 

  • Gorynia S, Koban I, Matthes R et al. (2013) In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models. GMS Hyg Infect Contr 8 (1): Doc01

    Google Scholar 

  • Grottke F, Lehmann I, Bender C et al. (2014) Physikalisches Niedertemperaturplasma zur Oberflächenbehandlung von Metallimplantaten als vielversprechende integrationsfördernde Option – eine experimentelle in vivo-Studie. German Med Sci GMS Publ House: DocSA33–767

    Google Scholar 

  • Haapasalo M, Orstavik D (1987) In vitro infection and disinfection of dentinal tubules. J Dent Res 66: 1375–139

    Article  CAS  PubMed  Google Scholar 

  • Haertel B, Backer C, Schulze C et al. (2014) Plasma-based stimulation of biotechnological processes in Ganoderma lucidum mycelia as example for a eukaryotic organism. Plasma Med 4(1–4): 17–28

    Article  Google Scholar 

  • Hashizume H, Ohta T, Hori M et al. (2015) Growth control of Saccharomyces cerevisiae through dose of oxygen atoms. Appl Phys Lett 107 (9): 093701

    Article  CAS  Google Scholar 

  • Hasse S, Duong Tran T, Hahn O et al. (2015) Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma. Clin Exp Dermatol 41(2): 202–209

    Article  PubMed  Google Scholar 

  • Heeg P, Kramer A, Pitten FA et al. (1998) Hautantiseptik aus prophylaktischer Indikation. Hygiene in Krankenhaus und Praxis. Ecomed, Landsberg, S 1–7

    Google Scholar 

  • Heinlin J, Maisch T, Zimmermann JL et al. (2013) Contact-free inactivation of Trichophyton rubrum and Microsporum canis by cold atmospheric plasma treatment. Future Microbiol 8(9): 1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Hijosa-Valsero M, Molina R, Schikora H et al. (2013) Removal of cyanide from water by means of plasma discharge technology. Water Res 47(4): 1701–1707

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt C, Wagner D, Kohlmann T et al. (2012) In-vitro analysis of the microbicidal activity of 6 contact lens care solutions. BMC Inf Dis 12: 241

    Article  Google Scholar 

  • Hoffmann C, Berganza C, Zhang J (2013) Cold atmospheric plasma: methods of production and application in dentistry and oncology. Med Gas Res 3: 21

    Article  PubMed  PubMed Central  Google Scholar 

  • Hübner NO, Wander K, Ryll S et al. (2009) Antibiotikafreie Sanierung von MRSA-positivem Personal. GMS Krankenhaushyg Interdiszip 4 (2): Doc04 (20091216)

    Google Scholar 

  • Hübner NO, Matthes R, Koban I et al. (2010) Efficacy of chlorhexidine, polyhexanide and tissue-tolerable plasma against pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 23 (1): 28–34

    Article  PubMed  CAS  Google Scholar 

  • Humud HR, Mahmood MA, Al-Razaq WA (2013) Strain specificity in antimicrobial activity of non-thermal plasma. Iraqi J Physics 11 (20): 110–115

    Google Scholar 

  • Isbary G, Heinlin J, Shimizu T et al. (2012) Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: Results of a randomized controlled trial. Br J Dermatol 167(2): 404–410

    Article  CAS  PubMed  Google Scholar 

  • Jablonowski L, Koban I, Kocher T (2013) Plasmamedizin in der Zahnmedizin. Hyg Med 38 (5): 206–211

    Google Scholar 

  • Jablonowski H, Hansch MA, Dunnbier M et al. (2015) Plasma jet′s shielding gas impact on bacterial inactivation. Biointerphases 10: 029506

    Article  PubMed  CAS  Google Scholar 

  • Jacofsky MC, Lubahn C, McDonnell C et al. (2014). Spatially resolved optical emission spectroscopy of a helium plasma jet and its effects on wound healing rate in a diabetic murine model. Plasma Med 4(1–4): 177–191

    Article  Google Scholar 

  • Jiang CQ, Chen MT, Gorur A et al. (2009) Nanosecond pulsed plasma dental probe. Plasma Proc Polym 3: 479–483

    Article  CAS  Google Scholar 

  • Kalghatgi S, Kelly CM, Cerchar E et al. (2011) Effects of non-thermal plasma on mammalian cells. PLoS ONE 6(1): e16270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampf G, Kramer A (2004) Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin Microbiol Rev 17: 863–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H (2004) Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Process Polym 1(2): 91–110

    Article  CAS  Google Scholar 

  • Klebes M, Ulrich C, Kluschke F et al. (2015) Combined antibacterial effects of tissue-tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. J Biophoton 8 (5): 382–391

    Article  CAS  Google Scholar 

  • Koban I, Matthes R, Hübner NO et al. (2010) Treatment ofCandida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys 12: 073039

    Article  CAS  Google Scholar 

  • Koban I, Holtfreter B, Hübner NO et al. (2011) Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro – proof of principle experiment. J Clin Periodontol 38: 956–965

    Article  CAS  PubMed  Google Scholar 

  • Koban I, Geisel MH, Holtfreter B et al. (2013) Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN dent 2013: 573262

    PubMed  PubMed Central  Google Scholar 

  • Kohnen W, Kober P, Fleischhack R et al. (2012) Grundlagen der Sterilisation. In: Kramer A, Assadian O, Exner M, Hübner NO, Simon A (Hrsg) Krankenhaus- und Praxishygiene. Urban Fischer, München, S 56–92

    Google Scholar 

  • Kramer A, Heidecke CD (2015) Präoperative Hautantiseptik und Hautschutz. Traum Berufskr 17 (Suppl 2): 322–329

    Article  Google Scholar 

  • Kramer A, Mersch-Sundermann V, Gerdes H et al. (2003) Toxikologische Bewertung für die Händedesinfektion relevanter antimikrobieller Wirkstoffe. In: Kampf G (Hrsg) Hände-Hygiene im Gesundheitswesen. Springer, Berlin, S 105–174

    Chapter  Google Scholar 

  • Kramer A, Below H, Bieber N et al. (2007) Quantity of ethanol absorption after excessive hand disinfection using three commercially available hand rubs is minimal and below toxic levels for humans. BMC Inf Dis 7: 117

    Article  CAS  Google Scholar 

  • Kramer A, Hübner NO, Weltmann KD et al. (2008a) Polypragmasia in the therapy of infected wounds – conclusions drawn from the perspectives of low temperature plasma technology for plasma wound therapy. GMS Krankenhaushyg Interdiszip 3 (1): Doc13 (20080311)

    Google Scholar 

  • Kramer A, Lindequist U, Weltmann KD et al. (2008b) Editorial. Plasma medicine – its perspective for wound therapy. GMS Krankenhaushyg Interdiszip 3 (1): Doc16 (20080311)

    Google Scholar 

  • Kramer A, Hübner NO, Assadian O et al. (2009) Chancen und Perspektiven der Plasmamedizin durch Anwendung von gewebekompatiblen Atmosphärendruckplasmen (Tissue Tolerable Plasmas, TTP). GMS Krankenhaushyg Interdiszip 4 (2): Doc10 (20091216)

    Google Scholar 

  • Kramer A, Bender C, Assadian O et al. (2013a) Physikalisches kaltes Atmosphärendruckplasma als aussichtsreiche Option zur Behandlung chronischer Wunden. Hyg Med 38 (5): 186–191

    Google Scholar 

  • Kramer A, Lademann J, Bender C et al. (2013b) Suitability of Tissue Tolerable Plasmas (TTP) for the management of chronic wounds. Clin Plasma Med 1: 11–18

    Article  Google Scholar 

  • Kramer A, Bekeschus S, Matthes R et al. (2015) Cold physical plasmas in the field of hygiene – relevance, significance, and future applications. Plasma Proc Polym 12(12): 1410–1422

    Article  CAS  Google Scholar 

  • Küster I, Kramer A, Bremert T et al. (2015) Eradication of MRSA skull base osteitis by combined treatment with antibiotics and sinonasal irrigation with sodium hypochlorite. Europ Arch Oto-Rhino-Laryngol Head Neck. doi 10.1007/s00405-015-3739-x

  • Kvam E, Davis B, Mondello F et al. (2012) Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob Agents Chemother 56(4): 2028–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lademann O, Kramer A, Richter H et al. (2011) Skin disinfection by plasma-tissue interaction: Comparison of the effectivity of tissue-tolerable plasma and a standard antiseptic. Skin Pharmacol Physiol 24(5): 284–288

    Article  CAS  PubMed  Google Scholar 

  • Leclaire C, Lecoq E, Orial G et al. (2008) Fungal decontamination by cold plasma : an innovating process for wood treatment. Braga (Portugal): COST Action IE0601 / ESWM – International Conference 5-7 Nov 2008, http://www.woodculther.com/wp-content/uploads/2009/03/leclaire_rev1.pdf

  • Lerouge S, Wertheimer MR, Yahia LH (2001) Plasma sterilization: A review of parameters, mechanisms, and limitations. Plasmas Polym 6 (3): 175–188

    Article  CAS  Google Scholar 

  • Lee K, Paek KH, Ju WT et al. (2006) Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 44 (3): 269–275

    PubMed  Google Scholar 

  • Liang Y, Wu Y, Sun K et al. (2012) Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma. Environmental Sci Technol 46(6): 3360–3368

    Article  CAS  Google Scholar 

  • Ling L, Jiafeng J, Jiangang L et al. (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4: 5859

    PubMed  PubMed Central  Google Scholar 

  • Lupu AR, Georgescu N (2010) Cold atmospheric plasma jet effects on V79-4 cells. Roum Arch Microbiol Immunol 2010;69(2): 67–74

    CAS  PubMed  Google Scholar 

  • Maisch T, Shimizu T, Li Y, Heinlin J et al. (2012) Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE 7(4): e34610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthes R, Bekeschus S, Bender C et al. (2012) Pilot-study on the influence of carrier gas and plasma application (open resp. delimited) modifications on physical plasma and its antimicrobial effect against Pseudomonas aeruginosa and Staphylococcus aureus. GMS Krankenhaushyg Interdiszip 7 (1): Doc02

    Google Scholar 

  • Matthes R, Koban I, Bender C et al. (2013a) Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis. Plasma Proc Polym 10: 161–166

    Article  CAS  Google Scholar 

  • Matthes R, Bender C, Schlüter R et al. (2013b) Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms. PLoS One 8(7): e70462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthes R, Assadian O, Kramer A (2014) Repeated applications of cold atmospheric pressure plasma does not induce resistance in Staphylococcus aureus embedded in biofilms. GMS Hyg Infect Contr 9(3): Doc17

    Google Scholar 

  • Matthes R, Jablonowski L, Koban I et al. (2015) In vitro treatment of Candida albicans biofilms on denture base material with volume dielectric barrier discharge plasma (VDBD) compared with common chemical antiseptics. Clin Oral Invest: 1–8

    Google Scholar 

  • Matthes R, Lührmann A, Holtfreter S et al. (2016) Antibacterial activity of cold atmospheric pressure argon plasma against 78 genetically different (mecA, luk-P, agr or capsular polysaccharide type) Staphylococcus aureus strains. Skin Pharmacol Physiol 29(2): 83–91

    Article  CAS  PubMed  Google Scholar 

  • McCaig C (2008) Electrical control of cell behaviour and wound healing. GMS Krankenhaushyg Interdiszip 3 (1): Doc03 (20080311)

    Google Scholar 

  • Meyer-Plath AA, Schröder K, Finke B et al. (2003) Current trends in biomaterial surface functionalization – nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 71 (3): 391–406

    Article  CAS  Google Scholar 

  • Misra NN, Tiwari BK, Raghavarao KSMS et al. (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Rev 3 (3–4): 159–170

    Article  Google Scholar 

  • Misra NN, Bourke P, Cullen PJ et al. (2014) In-package atmospheric pressure cold plasma treatment of strawberries. J Food Engin 161: 95

    Article  CAS  Google Scholar 

  • Mitra A, Li YF, Klämpfl TG et al. (2014) Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioproc Technol 7: 645–653

    Article  CAS  Google Scholar 

  • Monetta T, Scala A, Malmo C et al. (2011) Antibacterial activity of cold plasma-treated titanium alloy. Plasma Med 1(3–4): 205–214

    Article  Google Scholar 

  • Moraes FS, Rangel EC, Lopes PS et al. (2011) Reduction of bacterial adhesion to biocompatible polymer surfaces via plasma processing. Plasma Med 1(2): 157–166

    Article  Google Scholar 

  • Morales-Ramírez P, Cruz-Vallejo V, Peña-Eguiluz R et al. (2013) Assessing cellular DNA damage from a helium plasma needle. Radiat Res 179: 669–673

    Article  PubMed  CAS  Google Scholar 

  • Morar R, Suarasan I, Budu S et al. (1997) Corona discharge effects on some parasitical insects of cultured plants. J Electrostat 40–41: 669–673

    Article  Google Scholar 

  • Morfill GE, Kong MG, Zimmermann JL (2009) Focus on Plasma Medicine. New J Phys 11: 115011 (8pp)

    Article  Google Scholar 

  • Mueller S, Zahn R (2007) Air pollution control by non-thermal plasma. Contrib Plasma Phys 47 (7): 520–529

    Article  CAS  Google Scholar 

  • Muranyi P, Wunderlich J, Heise M (2007) Sterilization efficiency of a cascaded dielectric barrier discharge. J Appl Microbiol 103 (5): 1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Napp J, Daeschlein G, Napp M et al. (2015) On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices. GMS Hyg Infect Contr 2015 10: Doc08

    Google Scholar 

  • Nastuta AV, Topala I, Grigoras C et al. (2011) Stimulation of wound healing by helium atmospheric pressure plasma treatment. J Phys D: Appl Phys 44 (10): 105204

    Article  CAS  Google Scholar 

  • Nebe B, Finke B, Hippler R et al. (2013) Physikalische Plasmaprozesse zur Oberflächenfunktionalisierung von Implantaten für die Orthopädische Chirurgie. Hyg Med 38 (5): 192–197

    Google Scholar 

  • Oehmigen K, Hähnel M, Brandenburg R et al. (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Proc Polym 7(3–4): 250–257

    Article  CAS  Google Scholar 

  • Partecke LI, Evert K, Haugk J et al. (2012) Tissue Tolerable Plasma (TTP) induce apoptosis in the human pancreatic cancer cell line Colo-357 in vitro and in vivo. BMC Cancer 12(1): 473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrow P, Wemlinger E, Alhamarneh I (2011) Atmospheric pressure cold plasma processing of bioactive packaging applied directly to fresh fruits and vegetables. In: Hensel K, Machala Z (Hrsg) Book of Abstracts: NATO Science Advanced Research Workshop on Plasma for bio-decontamination, medicine and food security, March 15-18, 2011, Jasná, Slovakia, S 41–42

    Google Scholar 

  • Polak M, Ohl A, Quaas M et al. (2010) Oxygen and water plasma-immersion ion implantation of copper into titanium for antibacterial surfaces of medical implants. Adv Eng Mater 12(9): B511–B518

    Article  CAS  Google Scholar 

  • Poole K (2012) Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 67(9): 2069–2089

    Article  CAS  PubMed  Google Scholar 

  • Ptasińska S, Bahnev B, Stypczyńska A et al. (2010) DNA strand scission induced by a non-thermal atmospheric pressure plasma jet. Phys Chem Chem Phys 12: 7779–7781

    Article  PubMed  CAS  Google Scholar 

  • Redolfi M, Makhloufi C, Ognier S et al. (2009) Kerosene contaminated soil removal by non-thermal plasma discharge atmospheric. High Temp Mat Proc 13 (3): 373–384

    Google Scholar 

  • Redolfi M, Makhloufi C, Ognier S et al. (2010) Oxidation of kerosene components in a soil matrix by a dielectric barrier discharge reactor. Proc Safety Environm Protect 88 (3): 207–212

    Article  CAS  Google Scholar 

  • Ritts AC, Li H, Yu Q et al. (2010) Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur J Oral Sci 118(5): 510–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez PG, Felix FN, Woodley DT et al. (2008) The role of oxygen in wound healing: A review of the literature. Dermatol Surg 2008; 34: 1159–1169

    CAS  Google Scholar 

  • Rogez-Kreuz C, Yousfi R, Eng M et al. (2009) Inactivation of animal and human prions by hydrogen peroxide gas plasma sterilization. Inf Contr Hosp Epidemiol 30 (8): 769–777

    Article  CAS  Google Scholar 

  • Rowan NJ, Espie S, Harrower J et al. (2007) Pulsed plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water. J Food Protect 70 (12): 2805–2810

    CAS  Google Scholar 

  • Rupf S, Lehmann A, Hannig M et al. (2010) Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol 59: 206–212

    Article  PubMed  Google Scholar 

  • Rupf S, Idlibi AN, Marrawi FA et al. (2011) Removing biofilms from microstructured titanium ex vivo: A novel approach using atmospheric plasma technology. PLoS ONE 6(10): e25893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaudinn C, Jaramillo D, Freire MO et al. (2013) Evaluation of a nonthermal plasma needle to eliminate ex vivo biofilms in root canals of extracted human teeth. Int Endod J 46(10): 930–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluter O, Ehlbeck J, Hertel C et al. (2013) Opinion on the use of plasma processes for treatment of foods. Mol Nutr Food Res 57(5): 920–927

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Wende K, Bekeschus S et al. (2013) Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Rad Res 47(8): 577–592

    Article  CAS  Google Scholar 

  • Schmidt A, Dietrich S, Steuer A et al. (2015a) Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem 290: 6731–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Schiorlin M, Brandenburg R (2015b) Studies on the electrical behaviour and removal of toluene with a dielectric barrier discharge. Open Chem 13 (1): 477–483

    CAS  Google Scholar 

  • Schnabel U, Niquet R, Krohmann U et al. (2012) Decontamination of microbiologically contaminated seeds by microwave driven discharge processed gas. J Agricult Sci Applic 1: 99–105

    Google Scholar 

  • Schnabel U, Niquet R, Schlüter O et al. (2014) Decontamination and sensory properties of microbiologically contaminated fresh fruits and vegetables by microwave plasma processed air (PPA). J Food Proc Preserv DOI: 10.1111/jfpp.12273

    Google Scholar 

  • Scholtz V, Julak J, Kriha V (2010) The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Proc Polym 7(3–4): 237–243

    Article  CAS  Google Scholar 

  • Scholtz V, Julak J, Steankova B (2011) Comparison of point-to-plane and point-to-point corona discharge for the decontamination or sterilization of surfaces and liquids. Plasma Med 1(1): 21–25

    Article  Google Scholar 

  • Schröder K, Meyer-Plath A, Keller D et al. (2001) Plasma-induced surface functionalization of polymeric biomaterials in ammonia plasma. Contrib Plasma Phys 41 (6): 562–572

    Article  Google Scholar 

  • Schröder K, Finke B, Ohl A et al. (2010) Capability of differently charged plasma polymer coatings for control of tissue interactions with titanium surfaces. J Adhes Sci Technol 24(7): 1191–1205

    Article  CAS  Google Scholar 

  • Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp and Penicillum spp by cold plasma treatment. Bioresource Technol 99 (11): 5104–5109

    Article  CAS  Google Scholar 

  • Sen CK, Roy S (2008) Redox signals in wound healing. Biochim Biophys Acta 1780 (11): 1348–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sensenig R, Kalghatgi S, Cerchar E et al. (2011) Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann Biomed Eng 39(2): 674–687

    Article  PubMed  Google Scholar 

  • Shahidi S, Ghoranneviss M Moazzenchi B et al. (2007) Investigation of antibacterial activity on cotton fabrics with cold plasma in the presence of a magnetic field. Plasm Proc Polym 4 (1): 1098–1103

    Article  Google Scholar 

  • Shama G, Bayliss D, Perni S et al. (2009) Applications of cold atmospheric gas plasmas for microbial decontamination in the food industry. Paper presented at the BFE 2009: Proc Int Conf Bio and Food Electrotechnologies, Compiegne, France. http://tai-team.fr/upload/files/Proceedings_BFE2009%5B1%5D.pdf?PHPSESSID=d4b68af61367ad135fb2fe6746d2f2be

  • Shintani H (2012) Inactivation of prion and endotoxins by nitrogen gas plasma exposure. Pharmaceut Anal Acta 3 (8): 177

    Google Scholar 

  • Stryczewska HD, Pawlat J, Ebihara K (2013) Non-thermal plasma aided soil decontamination. J Advanced Oxid Technol 16: 23–30

    CAS  Google Scholar 

  • Surowsky B, Fischer A, Schlueter O et al. (2013) Cold plasma effects on enzyme activity in a model food system. Innovative Food Sci Emerg Technol 19: 146–152

    Article  CAS  Google Scholar 

  • Taheri S, Cavallaro A, Barton M et al. (2014) Antibacterial efficacy and cytotoxicity of silver-nanoparticle-based coatings facilitated by a plasma deposited polymer interlayer. Plasma Med 4(1–4): 101–115

    Article  Google Scholar 

  • Takamatsu T, Kawate A, Uehara K et al. (2012) Bacterial inactivation in liquids using multi-gas plasmas. Plasma Med 2(4): 237–247

    Article  Google Scholar 

  • Takemura Y, Umeji S, Ito K et al. (2014) Inactivation treatment if bacterial spores contaminated spices by atmospheric plasma jet. Plasma Med 4(1–4): 89–100

    Article  Google Scholar 

  • Tarricone E, Brun P, Vono M et al. (2012) Investigation of the effects of atmospheric pressure cold plasma on human cells and tissues. Ital J Anat Embryol 117(2): 186

    Google Scholar 

  • Ulbin-Figlewicz N, Jarmoluk A, Marycz K (2014) Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Ann Microbiol 65(3): 1537–1546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulmer M, Patzelt A, Vergou T et al. (2012) In vitro investigation of the follicular penetration of porcine ear skin using a nanoparticle-emulsion containing the antiseptic polihexanide. Laser Phys Lett 9 (5): 381–386

    Article  CAS  Google Scholar 

  • Ulmer M, Lademann J, Patzelt A et al. (2014) New strategies for preoperative skin antisepsis. Skin pharmacol 27(6): 283–292

    Article  CAS  Google Scholar 

  • Ulrich C, Kluschke F, Patzelt A et al. (2015) Exploratory research study to investigate the clinical use of cold atmospheric pressure argon plasma in the treatment of chronic wounds – a pilot study using a novel plasma jet prototype. J Wound Care 24(5): 196–203

    Article  CAS  PubMed  Google Scholar 

  • Varghese P, Nwaiwu O, Hort J et al. (2013) The use of cold atmospheric plasma to decontaminate the surface of soft fruits. Acta Phytopathol Sinica 43 (Suppl): 410

    Google Scholar 

  • Wang TC, Lu N, Li J et al. (2010) Degradation of pentachlorophenol in soil by pulsed corona discharge plasma. J Hazard Mater 180(1–3): 436–441

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhou H, Sun P et al. (2011a) The effect of an atmospheric pressure, DC nonthermal plasma microjet on tooth root canal, dentinal tubules infection and reinfection prevention. Plasma Med 1(2): 143–155

    Article  Google Scholar 

  • Wang TC, Lu N, Li J et al. (2011b) Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge. Environ Sci Technol 45(21): 9301–7930

    Article  CAS  PubMed  Google Scholar 

  • Wang RX, Nian WF, Wu HY et al. (2012) Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. Europ Phys J D 66: 276

    Article  CAS  Google Scholar 

  • Wang TC, Qu G, Li J et al. (2014) Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil. J Hazard Mater 264: 169–175

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhu R, Yang L et al. (2015) Non-thermal plasma for inactivated-vaccine preparation. Vaccine 34(8): 1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Weltmann KD, Brandenburg R, von Woedtke T et al. (2008a) Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressuere plasma jets (APPJs). J Phys D: Appl Phys 41: 194008

    Article  CAS  Google Scholar 

  • Weltmann KD, von Woedtke T, Brandenburg R et al. (2008b) Biomedical applications of atmospheric pressure plasma. Chem Listy 102: 1450–1451

    Google Scholar 

  • Weltmann KD, Polak M, Masur K et al. (2012) Plasma processes and plasma sources in medicine. Contrib Plasma Phys 52(7): 644–654

    Article  Google Scholar 

  • Wende K, Bekeschus S, Schmidt A et al. (2016) Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mut Res Gen Toxicol Environm Mutagen 798–799: 48–54

    Article  CAS  Google Scholar 

  • Winter T, Winter J, Polak M et al. (2011) Characterization of the global impact of low temperature gas plasma on vegetative microorganisms. Proteomics 11(17): 3518–3530

    Article  CAS  PubMed  Google Scholar 

  • Winter T, Bernhardt J, Winter J et al. (2013) Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma. Proteomics 13(17): 2608–2621

    Article  CAS  PubMed  Google Scholar 

  • von Woedtke T, Kramer A, Weltmann KD (2008a) Plasma sterilization: what are the conditions to meet this claim? Plasma Proc Polymers 5 (6): 534–539

    Article  CAS  Google Scholar 

  • von Woedtke T, Kober P, Heeg P (2008b) Wasserstoffperoxid-Gasplasma-Sterilisation (Sterrad®-Verfahren). In: Kramer A, Asssadian O (Hrsg) Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung. Thieme, Stuttgart, S 95–99

    Google Scholar 

  • Woedtke von T, Reuter S, Masur K et al. (2013a) Plasmas for medicine 530(4): 291–320

    Google Scholar 

  • von Woedtke T, Haertel B, Weltmann K et al. (2013b) Plasma pharmacy – physical plasma in pharmaceutical applications. Pharmazie 68(7): 492–498

    Google Scholar 

  • Yasuda H, Miura T, Kurita H et al. (2010) Biological evaluation of dna damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Proc Polym 7 (3–4): 301–308

    Article  CAS  Google Scholar 

  • Yavirach P, Chaijareenont P, Boonyawan D et al. (2009) Effects of plasma treatment on the shear bond strength between fiber-reinforced composite posts and resin composite for core build-up. Dent Mater J 28(6): 686–692

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari M, Matsuzaka K, Inoue T (2011) Surface modification by cold-plasma technique for dental implants – bio-functionalization with binding pharmaceuticals. Jap Dent Sci Rev 47 (2): 89–101

    Article  Google Scholar 

  • Yu Y, Tan M, Chen H et al. (2011) Non thermal plasma suppresses bacterial colonization on skin wound and promotes wound healing in mice. J Huazhong Univ Sci Technolog Med Sci 31(3): 390–394

    Article  PubMed  Google Scholar 

  • Zerrouki H, Barreyre L, Ledru G et al. (2012) Active species concentrations in pure N2 and Ar/x%N2 flowing late afterglows at reduced pressure: Implications for the sterilization of the medical instrumentation. Plasma Med 2(1–3): 1–18

    Article  Google Scholar 

  • Zerrouki H, Ricard A, Sarrette JP (2013) Determination of N and O-atom and N2(A) metastable molecule densities in the afterglows of N2 and N2-O2microwave discharges. Contrib Plasma Phys 53: 599

    Article  CAS  Google Scholar 

  • Zerrouki H, Ricard A, Sarrette JP (2014) Determination of N and O-atoms and N2 (A) metastable molecule densities in the afterglows of N2-H2, Ar-N2-H2 and Ar-N2-O2 microwave discharges. Contrib Plasma Phys 54 (10): 827–837

    Article  CAS  Google Scholar 

  • Zhao M, Song B, Pu J et al. (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-big gamma and PTEN. Nature 442: 457–460

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann JL, Dumler K, Shimizu T et al. (2011) Effects of cold atmospheric plasmas on adenoviruses in solution. J Phys D Appl Phys 44(50): 505201

    Article  CAS  Google Scholar 

  • Zimmermann JL, Shimizu T, Schmidt H et al. (2012) Test for bacterial resistance build-up against plasma treatment. New J Phys 14(7): 073037

    Article  CAS  Google Scholar 

  • Ziuzina D, Patil S, Cullen PJ et al. (2014) Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Med 4(1–4): 137–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, A. et al. (2016). Aktueller und perspektivischer Einsatz kalter Plasmen aus hygienischer Indikation. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Plasmamedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52645-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52645-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52644-6

  • Online ISBN: 978-3-662-52645-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics