Advertisement

Heat Transfer

  • Günter BrennEmail author
Chapter
Part of the Mathematical Engineering book series (MATHENGIN)

Abstract

This chapter discusses problems of thermal energy transport which may be solved analytically. The processes may be conductive in nature, involving the diffusion equation as the underlying differential equation for the spatiotemporal evolution of temperature. As far as convective processes are concerned, the intention to have analytical descriptions clearly puts the restriction to laminar flow in simple geometries.

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover Publications, New York (1972)Google Scholar
  2. 2.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford Science Publications, Oxford (2005)Google Scholar
  3. 3.
    Doetsch, G.: Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, 6th edn. (Guide to the Practical Application of the Laplace and Z Transforms, in German). Oldenbourg, München (1989)Google Scholar
  4. 4.
    Grigull, U.: Temperaturausgleich in einfachen Körpern - ebene Platte, Zylinder, Kugel, halbunendlicher Körper (Temperature Relaxation in Simple Bodies—Flat Plate, Cylinder, Sphere, Semi-Infinite Body, in German). Springer, Berlin, Göttingen, Heidelberg (1964)Google Scholar
  5. 5.
    Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.: Principles of Heat and Mass Transfer, 7th edn. Wiley, New York (2013)Google Scholar
  6. 6.
    Kakaç, S., Shah, R.K., Aung, W.: Handbook of Single-Phase Convective Heat Transfer. Wiley, New York (1987)Google Scholar
  7. 7.
    Kamke, E.: Differentialgleichungen - Lösungsmethoden und Lösungen. Band I, Gewöhnliche Differentialgleichungen (Differential Equations—Solution Methods and Solutions. Volume I, Ordinary Differential Equations, in German). B.G. Teubner, Stuttgart (Germany) (1983), p. 451Google Scholar
  8. 8.
    Lebedev, N.N., Skalskaya, I.P., Uflyand, Y.S.: Worked Problems in Applied Mathematics. Dover Publications, New York (1965)Google Scholar
  9. 9.
    Luikov, A.V.: Analytical Heat Diffusion Theory. Academic Press, New York, London (1968)Google Scholar
  10. 10.
    Polifke, W., Kopitz, J.: Wärmeübertragung - Grundlagen, analytische und numerische Methoden (Heat Transfer—basics, Analytical and Numerical Methods, in German). Pearson Studium, München, Boston, San Francisco (2005)Google Scholar
  11. 11.
    Slattery, J.C.: Advanced Transport Phenomena. Cambridge University Press, Cambridge (1999)Google Scholar
  12. 12.
    Weigand, B.: Analytical Methods for Heat Transfer and Fluid Flow Problems. Springer, Berlin, Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Heat TransferGraz University of TechnologyGrazAustria

Personalised recommendations