Flows with Interfaces

  • Günter BrennEmail author
Part of the Mathematical Engineering book series (MATHENGIN)


We now look at linear flows with interfaces. These flows and their instability are elementary to the formation of the disperse phase in many gas–liquid two-phase flows, such as sprays and bubbly flows. We are interested in the instability of liquid sheets and jets submerged in another, immiscible fluid. For transport processes across the interface, oscillations of drops and bubbles may have a significant influence. We also look at the behaviour of drops upon impact on a solid substrate. The fluid system is a linear viscoelastic liquid in an outer immiscible host fluid. The correspondence principle allows for the derivation of the equations as for a Newtonian liquid, but with a frequency-dependent viscosity. The ambient medium is a gas for the liquid sheet flow, since the flow of a liquid sheet in an ambient liquid medium does not seem to be of much technical relevance. In the liquid jet and drop cases, we treat the ambient fluid such that it may be either a liquid or a gas.


  1. 1.
    Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. I. Wiley, New York (1987)Google Scholar
  2. 2.
    Brenn, G., Liu, Z.B., Durst, F.: Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets. Int. J. Multiph. Flow 26, 1621–1644 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brenn, G., Teichtmeister, S.: Linear shape oscillations and polymeric time scales of viscoelastic drops. J. Fluid Mech. 733, 504–527 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brenn, G., Plohl, G.: The oscillating drop method for measuring the deformation retardation time of viscoelastic liquids. J. Non-Newtonian Fluid Mech. 223, 88–97 (2015)CrossRefGoogle Scholar
  5. 5.
    Chabbra, R.: Bubbles, Drops, and Particles in Non-Newtonian Fluids. Taylor & Francis, Boca Raton, London, New York (2007)Google Scholar
  6. 6.
    Chandrasekhar, S.: The oscillations of a viscous liquid globe. Proc. London Math. Soc. 9, 141–149 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1961)zbMATHGoogle Scholar
  8. 8.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Academic Press, New York (1978)Google Scholar
  9. 9.
    Dombrowski, N., Johns, W.R.: The aerodynamic instability and disintegration of viscous liquid sheets. Chem. Eng. Sci. 18, 203–214 (1963)CrossRefGoogle Scholar
  10. 10.
    Foss, J.F., Panton, R.L., Yarin, A.L.: Non-dimensional representation of the boundary-value problem. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds.) Springer Handbook of Experimental Fluid Mechanics, pp. 57–82. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Goldin, M., Yerushalmi, J., Pfeffer, R., Shinnar, R.: Breakup of a laminar capillary jet of a viscoelastic fluid. J. Fluid Mech. 38, 689–711 (1969)CrossRefGoogle Scholar
  12. 12.
    Gordillo, J.M., Pérez-Saborid, M.: Aerodynamic effects in the break-up of liquid jets: on the first wind-induced break-up regime. J. Fluid Mech. 541, 1–20 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hagerty, W.W., Shea, J.F.: A study of the stability of plane fluid sheets. J. Appl. Mech. 22, 509–514 (1955)Google Scholar
  14. 14.
    Huang, P.Y., Hu, H.H., Joseph, D.D.: Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids. J. Fluid Mech. 362, 297–325 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Joseph, D.D.: Fluid Dynamics of Viscoelastic Liquids. Springer, New York, Berlin, Heidelberg (1990)CrossRefzbMATHGoogle Scholar
  16. 16.
    Keller, J.B., Rubinow, S.I., Tu, Y.O.: Spatial instability of a jet. Phys. Fluids 16, 2052–2055 (1973)CrossRefzbMATHGoogle Scholar
  17. 17.
    Khismatullin, D.B., Nadim, A.: Shape oscillations of a viscoelastic drop. Phys. Rev. E 63, 061508 (2001)CrossRefGoogle Scholar
  18. 18.
    Kitamura, Y., Mishima, H., Takahashi, T.: Stability of jets in liquid-liquid systems. Canad. J. Chem. Eng. 60, 723–731 (1982)CrossRefGoogle Scholar
  19. 19.
    Lamb, H.: On the oscillations of a viscous spheroid. Proc. London Math. Soc. 13, 51–66 (1881)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1932)zbMATHGoogle Scholar
  21. 21.
    Li, X., Tankin, R.S.: On the temporal instability of a two-dimensional viscous liquid sheet. J. Fluid Mech. 226, 425–443 (1991)CrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, Z.H., Liu, Z.B.: Linear analysis of three-dimensional instability of non-Newtonian liquid jets. J. Fluid Mech. 559, 451–459 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lord Rayleigh, J.W.S.: On the instability of jets. Proc. London Math. Soc. 10, 4–13 (1878)Google Scholar
  24. 24.
    Lord Rayleigh, J.W.S.: On the capillary phenomena of jets. Proc. R. Soc. London 29, 71–97 (1879)Google Scholar
  25. 25.
    Lord Rayleigh, J.W.S.: On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag. 34, 145–154 (1892)Google Scholar
  26. 26.
    Lozano, A., Barreras, F., Hauke, G., Dopazo, C.: Longitudinal instabilities in an air-blasted liquid sheet. J. Fluid Mech. 437, 143–173 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Meister, B.J., Scheele, G.F.: Generalized solution of the Tomotika stability analysis for a cylindrical jet. AIChE J. 13, 682–688 (1967)CrossRefGoogle Scholar
  28. 28.
    Meister, B.J., Scheele, G.F.: Prediction of jet length in immiscible liquid systems. AIChE J. 15, 689–699 (1969)CrossRefGoogle Scholar
  29. 29.
    Meister, B.J., Scheele, G.F.: Drop formation from cylindrical jets in immiscible liquid systems. AIChE J. 15, 700–706 (1969)CrossRefGoogle Scholar
  30. 30.
    Mikami, T., Mason, S.G.: The capillary break-up of a binary liquid column inside a tube. Canad. J. Chem. Eng. 53, 372–377 (1975)CrossRefGoogle Scholar
  31. 31.
    Miller, C.A., Scriven, L.E.: The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32, 417–435 (1968)CrossRefzbMATHGoogle Scholar
  32. 32.
    Prosperetti, A.: Normal-mode analysis for the oscillations of a viscous liquid drop in an immiscible liquid. J. de Mécanique 19, 149–182 (1980)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Scheele, G.F., Meister, B.J.: Drop formation at low velocities in liquid-liquid systems—parts I and II. AIChE J. 14, 9–19 (1968)CrossRefGoogle Scholar
  34. 34.
    Senecal, P.K., Schmidt, D.P., Nouar, I., Rutland, C.J., Reitz, R.D., Corradini, M.L.: Modeling high-speed viscous liquid sheet atomization. Int. J. Multiphase Flow 25, 1073–1097 (1999)CrossRefzbMATHGoogle Scholar
  35. 35.
    Squire, H.B.: Investigation of the instability of a moving liquid film. Brit. J. Appl. Phys. 4, 167–169 (1953)CrossRefGoogle Scholar
  36. 36.
    Sterling, A.M., Sleicher, C.A.: The instability of capillary jets. J. Fluid Mech. 68, 477–495 (1975)CrossRefzbMATHGoogle Scholar
  37. 37.
    Tomotika, S.: On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. London A 150, 322–337 (1935)CrossRefzbMATHGoogle Scholar
  38. 38.
    Weber, C.: Zum Zerfall eines Flüssigkeitsstrahles (On the breakup of a liquid jet, in German). ZAMM—Zeitschrift für Angewandte Mathematik und Mechanik. J. Appl. Math. Mech. 11, 136–154 (1931) (in German)Google Scholar
  39. 39.
    Yarin, A.L., Weiss, D.A.: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141–173 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Heat TransferGraz University of TechnologyGrazAustria

Personalised recommendations