Skip to main content

Empirical-Based Approach for Prediction of Global Irradiance and Energy for Solar Photovoltaic Systems

  • Chapter
  • First Online:
Advances in Solar Photovoltaic Power Plants

Part of the book series: Green Energy and Technology ((GREEN))

  • 2099 Accesses

Abstract

Accuracy in prediction of global horizontal irradiance is vitally important for photovoltaic energy prediction, its installation and pre-sizing studies. A change in the solar radiation directly impacts the electricity production and in turn, the plant economics. Hence employing a model possessing improved prediction accuracy significantly affects the photovoltaic energy prediction. Furthermore, monthly mean data is required for prediction of long-term performance of solar photovoltaic systems, making the same to be concentrated for the present contribution. The available models for prediction of irradiance and energy unlike physical and statistical models depend on input parameters whose availability, assumption and determination is difficult. This finally creates complexity in predicting the desired response. Hence empirical models are chosen preferable over physical and statistical-based models. Empirical models correlate only the available input atmospheric parameters affecting solar irradiance and energy, thereby reducing the complexity experienced by physical and statistical models. Yet, the reliability or accuracy of model varies with location. The reliability of an empirical model depends on the incorporation of input’s and data set (training set) for its formulation. Thus the consideration of significant input factors lies to be a persistently prevailing challenge, driving the need for an improved prediction model delivering irradiance and energy. In this chapter, an empirical model is proposed for prediction of irradiance and energy. The incorporated input factors for the formulation of energy prediction model is emphasized by performance and exergy analysis of solar photovoltaic systems. The proposed model hence combines the thermal and electrical aspects of photovoltaic systems gaining reliability and limiting the dependence towards real-time measured input factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird RE, Hulstrom RL (1980) Direct insolation models. Report SERI/TR-335–344. Solar Energy Research Institute, Golden, CO

    Google Scholar 

  2. Powell GL (1984) The clear sky model. Asharae J 26:27–29

    Google Scholar 

  3. Machler MA, lqbal M (1985) A modification of the ASHRAE clear sky irradiation model. Trans ASHRAE 91A:106–115

    Google Scholar 

  4. Gueymard C (2001) Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol Energy 71:325–346

    Article  Google Scholar 

  5. De Soto W, Klein SA, Beckman WA (2006) Improvement and validation of a model for photovoltaic array performance. Sol Energy 80:78–88

    Article  Google Scholar 

  6. Mavromatakis F, Makrides G, Georghiou G, Pothrakis A, Franghiadakis Y, Drakakis E, Koudoumas E (2010) Modeling the photovoltaic potential of a site. Renew Energy 35:1387–1390

    Article  Google Scholar 

  7. Lacour A, Duffy A, Sarah MC, Michael C (2010) Validated real time energy models for small-scale grid connected PV systems. Energy 36:4086–4091

    Google Scholar 

  8. King DL, Gonzalez S, Galbraith GM, Boyson W (2007) Performance model for grid-connected photovoltaic inverters, SAND2007-5036. http://www.prod.sandia.gov/cgi/bin/techlib/accesscontrol.pl/2007/075036.pdf

  9. Box G, Jenkins G (1976) Time series analysis: forecasting and control. Holden Day, Oakland

    MATH  Google Scholar 

  10. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Article  MathSciNet  MATH  Google Scholar 

  11. Krebs K, Gianolli-Rossi E (1988) Energy rating of PV modules by outdoor response analysis. In: International conference on solar energy, Florence, Italy

    Google Scholar 

  12. Meyer EL, Dyk EE (2000) Development of energy model based on total daily irradiation and maximum ambient temperature. Renew Energy 21:37–47

    Article  Google Scholar 

  13. Mayer D, Wald L, Poissant Y, Pelland S (2008) Performance prediction of grid-connected photovoltaic systems using remote sensing. Report IEA-PVPS T2-07, p 18

    Google Scholar 

  14. Angstrom AS (1924) Solar and terrestrial radiation. Q J Roy Meteorol Soc 50:121–126

    Article  Google Scholar 

  15. Prescott JA (1940) Evaporation from water surface in relation to solar radiation. Trans Roy Soc S Australia 64:114–118

    Google Scholar 

  16. Lewis G (1983) Estimates of irradiance over Zimbabwe. Sol Energy 31:609–612

    Article  Google Scholar 

  17. Jain S, Jain PC (1988) A comparison of the angstrom-type correlations and the estimation of monthly average daily global irradiation. Sol Energy 40:93–98

    Article  Google Scholar 

  18. Mani A, Rangarajan S (1982) Solar radiation over India. Allied Publishers, New Delhi

    Google Scholar 

  19. Veeran PK, Kumar S (1995) Analysis of monthly average daily global radiation and monthly average sunshine duration at two tropical locations. Renew Energy 3:935–939

    Article  Google Scholar 

  20. Katiyar AK, Pandey C (2010) Simple correlation for estimating the global solar radiation on horizontal surfaces in India. Energy 35:5043–5048

    Article  Google Scholar 

  21. Benson PR, Paris MV, Serry JE, Justus CG (1984) Estimation of daily and monthly direct, diffuse and global solar radiation from sunshine duration measurement. Sol Energy 32:523–535

    Article  Google Scholar 

  22. Ogelman H, Ecevit A, Tasdemiroglu E (1984) A new method for estimating solar radiation from bright sunshine data. Sol Energy 33:619–625

    Article  Google Scholar 

  23. Samuel TDMA (1991) Estimation of global radiation for Sri Lanka. Sol Energy 47:333–337

    Article  Google Scholar 

  24. Ampratwum DB, Dorvlo ASS (1999) Estimation of solar radiation from the number of sunshine hours. Appl Energy 63:161–167

    Article  Google Scholar 

  25. Elagib N, Mansel MG (2000) New approaches for estimating global solar radiation across Sudan. Energy Convers Manag 41:419–434

    Article  Google Scholar 

  26. Hayer A, Balli O, Arif H (2006) Global solar radiation potential, part 1: model development. Energy Sources Part B 1:303–315

    Article  Google Scholar 

  27. El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS (2009) Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia. Energy Policy 37:3645–3649

    Article  Google Scholar 

  28. Wanxiang Y, Zhengrong L, Yuyan W, Fujian J, Lingzhou H (2014) Evaluation of global solar radiation models for Shanghai, China. Energy Convers Manag 84:597–612

    Article  Google Scholar 

  29. Hargreaves GH, Samani A (1982) Estimating potential evapo-transpiration. J Irrig Drainage Eng 223–230

    Google Scholar 

  30. Bristow K, Cambell G (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol 31:159–166

    Article  Google Scholar 

  31. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapo-transpiration: guidelines for computing crop water requirements. J Irrig Drainage Eng 56

    Google Scholar 

  32. Goodin DG, Hutchinson JMS, Vanderlip RL, Knapp MC (1999) Estimating solar irradiance for crop modeling using daily air temperature. Agric For Meteorol 91:293–300

    Google Scholar 

  33. Meza F, Varas E (2000) Estimation of mean monthly solar global radiation as a function of temperature. Agric For Meteorol 100:231–241

    Article  Google Scholar 

  34. Almorox J, Hontoria C, Benito M (2011) Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Appl Energy 88:1703–1709

    Article  Google Scholar 

  35. Huashan L, Weibin M, Yongwang L, Xianlong W, Liang Z (2011) Global solar radiation estimation with sunshine duration in Tibet, China. Renew Energy 36:3141–3145

    Article  Google Scholar 

  36. Punnaiah V, Guduri G (2014) Analysis of yearly solar radiation by using correlations based on ambient temperature: India. Sustain Cities Soc 11:16–21

    Article  Google Scholar 

  37. Mahmood R, Hubbard KG (2002) Effect of time of temperature observation and estimation of daily solar radiation for the Northern Great Plains, U.S.A. Agron J 94:723–733

    Article  Google Scholar 

  38. Emmanuel K, Sofoklis K, Thales M (2009) Performance analysis of grid connected photovoltaic park on the island of Crete. Energy Convers Manag 50:433–438

    Article  Google Scholar 

  39. De Jong R, Stewart DW (1993) Estimating global solar radiation from common meteorological observations in western Canada. Can J Plant Sci 73:509–518

    Article  Google Scholar 

  40. Togrul IT, Onat E (2000) A comparison of estimated and measured values of solar radiation in Elazig. Renew Energy 20:243–252

    Article  Google Scholar 

  41. Trabea AA, Mosalam Shaltout MA (2000) Correlation of global solar radiation with meteorological parameters over Egypt. Renew Energy 21:297–308

    Google Scholar 

  42. Rensheng C, Kang E, Jianping Y, Shihua L, Wenzhi Z (2006) Estimating daily global radiation using two types of revised models in China. Energy Convers Manag 47:865–878

    Article  Google Scholar 

  43. Muyiwa SA (2012) Estimating global solar radiation using common meteorological data in Akure, Nigeria. Renew Energy 47:38–44

    Article  Google Scholar 

  44. Teke A, Basak H, Celik O (2015) Evaluation and performance comparison of different models on solar radiation. Renew Sustain Energy Rev 50:1097–1107

    Article  Google Scholar 

  45. IEA International Energy Agency (2008) Performance prediction of grid connected photovoltaic systems using remote sensing. Report IEA PVPS T2-08, pp 1–44

    Google Scholar 

  46. Becquerel Edmond (1839) Mémoire sur les effets électriques produits sous l’influence des rayons solaires (In French). Comptes Rendus 9:561–567

    Google Scholar 

  47. Igzi E, Akkaya YE (2013) Exergo-economic analysis of a solar photovoltaic system in ˙Istanbul, Turkey. Turkish J Electr Eng Comput Sci 21:350–359

    Google Scholar 

  48. Rusirawan D (2012) Energy modelling of photovoltaic modules in grid connected PV systems. Ph.D Dissertation

    Google Scholar 

  49. Minister of Natural Resources Canada (2003) RETscreen engineering and cases textbook, 3rd edn

    Google Scholar 

  50. Athena Infonomics India Private Limited (2011) Power scenario in Tamil Nadu: a comparative analysis. pp 1–27

    Google Scholar 

  51. Measurement of sunshine duration and solar radiation, pp 1–14. www.jma.go.jp/jma/jma-eng

  52. Taylor W (1996) www.taylormade.com.au/billspage/sunshine/sunhine.html

  53. Cooper PI (1969) The Absorption of Solar Radiation in Solar Stills. Sol Energy 12:3

    Google Scholar 

  54. Rahman MM (2000) Site independent global solar radiation correlation with bright sun shine hours. Int J Radio Space Phys 29:285–290

    Google Scholar 

  55. Kunt M (2008) The daily temperature amplitude and surface solar radiation. Ph.D Dissertation, University of Zurich

    Google Scholar 

  56. Stefan J (1879) On the relationship between heat radiation and temperature. 79:391–428

    Google Scholar 

  57. Planck M (1914) The theory of heat radiation, 2nd edn

    Google Scholar 

  58. Tyagi AP (2009) Solar radiant energy over India. Indian Metrological Department, Ministry of Earth Sciences

    Google Scholar 

  59. Sivamadhavi V, Samuel Selvaraj R (2012) Prediction of monthly mean daily global solar radiation using artificial neural network. J Earth Syst Sci 121:1501–1510

    Article  Google Scholar 

  60. Per Christian H, Victor P, Godela S (2013) Least square data fitting with applications. The John Hopkins University Press, Baltimore

    MATH  Google Scholar 

  61. Tarhan S, Ahmed S (2005) Model selection for global and diffuse radiation over the central black sea (CBS) region of Turkey. Energy Convers Manag 46:605–613

    Article  Google Scholar 

  62. Amit KY, Chandel SS (2014) Solar radiation prediction using artificial neural network techniques: a review. Renew Sustain Energy Rev 33:771–781

    Google Scholar 

  63. Magrabhi AH (2009) Parameterization of a simple model to estimate monthly global solar radiation based on meteorological variables, and evaluation of existing solar radiation models for Tabouk. Saudi Arabia Energy Convers Manage 50:2754–2760

    Article  Google Scholar 

  64. Swartman RK, Ogunlade O (1967) Solar radiation estimates from common parameters. Sol Energy 11:170–172

    Article  Google Scholar 

  65. Abdalla YAG (1994) New correlation of global solar radiation with meteorological parameters for Bahrain. Int J Solar Energy 16:111–120

    Article  Google Scholar 

  66. Modi V, Sukhatme SP (1979) Estimation of daily total and diffuse insolation in India from weather data. Sol Energy 22:402

    Article  Google Scholar 

  67. Sivamadhavi V, Samuel R (2012) Robust regression technique to estimate global radiation. Int J Radio Space Phys 41:17–25

    Google Scholar 

  68. Nathan B, Mark M, Craig C (2008) Modeling photovoltaic and concentrating solar power trough performance, cost, and financing with the solar advisor model. In: American solar energy society conference

    Google Scholar 

  69. Gibbs JW (1873) A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans Connecticut Acad 2:382–404

    MATH  Google Scholar 

  70. Rant Z (1956) Exergy, a new word for technical available work. Forschung auf dem Gebiete des Ingenieurwesens 22:36–37 (in German)

    Google Scholar 

  71. Sahin A, Dincer I, Rosen MA (2007) Thermodynamic analysis of solar photovoltaic cell systems. Solar Energy Mater Solar Cells 91:153–159

    Google Scholar 

  72. Wong KFV (2000) Thermodynamics for engineers. CRC Press LLC, University of Miami, Boca Raton, USA

    Google Scholar 

  73. Petala R (2003) Exergy of undiluted thermal radiations. Sol Energy 74:469–488

    Article  Google Scholar 

  74. Boyle G (2004) Renewable energy power for a sustainable future, 2nd ed. Oxford: Oxford University Press

    Google Scholar 

  75. Pandey A, Tyagi VK, Tyagi SK (2012) Exergetic analysis and parametric study of multi-crystalline solar photovoltaic system at a typical climatic zone. Clean Technol Environ Policy 15:333–343

    Article  Google Scholar 

  76. Ayompe LM, Duffy A, McCormack SJ, Conlon M (2011) Measured performance of a 1.72 kW roof top grid connected photovoltaic system in Ireland. Energy Convers Manag 52:816–825

    Article  Google Scholar 

  77. Drif M, Perez PJ, Aguileria J, Almonacid G, Gomez P, De la Casa J, Aguilar JD (2007) A grid connected photovoltaic system of 200 kWp at Jean university: overview and performance analysis. Solar Energy 91:670–683

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivasankari Sundaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sundaram, S., Babu, J.S.C. (2016). Empirical-Based Approach for Prediction of Global Irradiance and Energy for Solar Photovoltaic Systems. In: Islam, M., Rahman, F., Xu, W. (eds) Advances in Solar Photovoltaic Power Plants. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50521-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50521-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50519-9

  • Online ISBN: 978-3-662-50521-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics