Skip to main content

Maximum Power Point Tracking Methods for PV Systems

  • Chapter
  • First Online:
Advances in Solar Photovoltaic Power Plants

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Maximum power point tracking (MPPT) is an important consideration in photovoltaic (PV) systems. These systems exhibit variable nonlinear current–voltage (IV) and power–voltage (PV) characteristics which vary with environmental conditions. The optimum operation of a PV system occurs when the system operates at the unique maximum power point (MPP) for the given environmental conditions. Key environmental conditions include the irradiance on the cell, temperature of the cell and any shading phenomenon. Shading can occur due to objects, dust or dirt and module mismatch arising from damage or manufacturing tolerances. These shading effects introduce further nonlinearity into the IV and PV characteristics of the system. An extensive variety of MPPT techniques has been proposed which vary from simple estimation techniques to advanced tracking techniques. In this chapter, the criteria for assessing the performance of MPPT methods are defined followed by a complete description and discussion of both techniques designed for uniform environmental conditions and those designed for non-uniform environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei P, Li Y, Seem J (2011) Sequential ESC based global MPPT control for photovoltaic array with variable shading. IEEE Trans Sustain Energy 2(3):348–358

    Article  Google Scholar 

  2. Patel H, Agarwal V (2008) MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE Trans Energy Convers 23(1):302–310

    Article  Google Scholar 

  3. Lyden S, Haque ME (2015) Maximum Power Point Tracking techniques for photovoltaic systems: a comprehensive review and comparative analysis. Renew Sustain Energy Rev 52:1504–1518

    Article  Google Scholar 

  4. Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439–449

    Article  Google Scholar 

  5. Bekker B, Beukes HJ (2004) Finding an optimal PV panel maximum power point tracking method. In: Proceedings of AFRICON Conference in Africa (AFRICON), pp 1125–1129

    Google Scholar 

  6. Blanes JM, Toledo FJ, Montero S, Garrigós A (2013) In-site real-time photovoltaic I-V curves and maximum power point estimator. IEEE Trans Power Electron 28(3):1234–1240

    Article  Google Scholar 

  7. Pandey A, Dasgupta N, Mukerjee AK (2007) A Simple single-sensor MPPT solution. IEEE Trans Power Electron 22(2):698–700

    Article  Google Scholar 

  8. Farivar G, Asaei B, Mehrnami S (2013) An analytical solution for tracking photovoltaic module MPP. IEEE J Photovolt 3(3):1053–1061

    Article  Google Scholar 

  9. Kuperman A (2014) Comments on ‘an analytical solution for tracking photovoltaic module MPP’. IEEE J Photovoltaics 4(2):734–735

    Article  Google Scholar 

  10. Patel S, Shireen W (2011) Fast converging digital MPPT control for photovoltaic (PV) applications. In: 2011 IEEE Power and Energy Society General Meeting, pp 1–6

    Google Scholar 

  11. Scarpa V, Buso S, Spiazzi G (2009) Low-complexity MPPT technique exploiting the PV module MPP locus characterization. IEEE Trans Ind Electron 56(5):1531–1538

    Article  Google Scholar 

  12. Liu YH, Yang ZZ, Wang SC, Huang JW (2011) A novel analog MPPT technique for low power photovoltaic systems. In: IEEE Region 10 conference, pp 833–837

    Google Scholar 

  13. Hartmann LV, Vitorino MA, Correa MBR, Lima AMN (2013) Combining model-based and heuristic techniques for fast tracking the maximum-power point of photovoltaic systems. IEEE Trans Power Electron 28(6):2875–2885

    Article  Google Scholar 

  14. Abdelsalam AK, Goh S, Abdelkhalik O, Ahmed S, Massoud A (2013) Iterated unscented Kalman filter-based maximum power point tracking for photovoltaic applications. In: IECON 2013—39th annual conference of the IEEE Industrial Electronics Society, pp 1685–1693

    Google Scholar 

  15. Elgendy MA, Zahawi B, Atkinson DJ (2012) Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans Sustain Energy 3(1):21–33

    Article  Google Scholar 

  16. Alajmi B, Ahmed K, Finney S, Williams B (2011) Fuzzy logic controlled approach of a modified hill climbing method for maximum power point in microgrid stand-alone photovoltaic system. IEEE Trans Power Electron 26(4):1022–1030

    Article  Google Scholar 

  17. Carannante G, Fraddanno C, Pagano M, Piegari L (2009) Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation. IEEE Trans Ind Electron 56(11):4374–4380

    Article  Google Scholar 

  18. Abdelsalam AK, Massoud AM, Ahmed S, Enjeti PN (2011) High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans Power Electron 26(4):1010–1021

    Article  Google Scholar 

  19. Sera D, Teodorescu R, Hantschel J, Knoll M (2008) Optimized maximum power point tracker for fast-changing environmental conditions. IEEE Trans Ind Electron 55(7):2629–2637

    Article  Google Scholar 

  20. Chikh A, Chandra A (2011) An optimum method for maximum power point tracking in photovoltaic systems. In: IEEE Power and Energy Society General Meeting, pp 1–6

    Google Scholar 

  21. Pandey A, Dasgupta N, Mukerjee AK (2008) High-performance algorithms for drift avoidance and fast tracking in solar MPPT system. IEEE Trans Energy Convers 23(2):681–689

    Article  Google Scholar 

  22. Mastromauro RA, Liserre M, Dell’Aquila A (2012) Control issues in single-stage photovoltaic systems: MPPT, current and voltage control. IEEE Trans Ind Inf 8(2):241–254

    Google Scholar 

  23. Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R (2013) On the Perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J Photovolt 3(3):1070–1078

    Article  Google Scholar 

  24. Dzung PQ, Vu NTD, Anh NB, Phuong LM, Hiep LC, Lee HH (2012) The low-cost single-stage grid connected photovoltaic system with a modified MPPT method. In: IEEE International conference on Power System Technology (POWERCON), pp 1–6

    Google Scholar 

  25. Elgendy MA, Zahawi B, Atkinson DJ (2013) Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans Sustain Energy 4(1):108–117

    Article  Google Scholar 

  26. Al-Atrash H, Batarseh I, Rustom K (2010) Effect of measurement noise and bias on hill-climbing MPPT algorithms. IEEE Trans Aerosp Electron Syst 46(2):745–760

    Article  Google Scholar 

  27. Huang JW, Liu CL, Leou RC, Liu YH (2011) Design and implementation of a FLC-based MPPT technique for photovoltaic systems. In: IEEE Region 10 conference, pp 903–907

    Google Scholar 

  28. Ji YH, Jung DY, Kim JG, Kim JH, Lee T, Won CY (2011) A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans Power Electron 26(4):1001–1009

    Article  Google Scholar 

  29. Liu F, Duan S, Liu F, Liu B, Kang Y (2008) A variable step size INC MPPT method for PV systems. IEEE Trans Ind Electron 55(7):2622–2628

    Article  Google Scholar 

  30. Hsieh GC, Hsieh HI, Tsai CY, Wang CH (2013) Photovoltaic power-increment-aided incremental-conductance MPPT With two-phased tracking. IEEE Trans Power Electron 28(6):2895–2911

    Article  Google Scholar 

  31. Manganiello P, Ricco M, Petrone G, Monmasson E, Spagnuolo G (2014) Optimization of perturbative PV MPPT methods through on line system identification. IEEE Trans Ind Electron 61(12):6812–6821

    Article  Google Scholar 

  32. Yu B, Yu G, Kim Y (2011) Design and experimental results of improved dynamic MPPT performance by EN50530. In: IEEE 33rd International Telecommunications Energy Conference (INTELEC), pp 1–4

    Google Scholar 

  33. Scarpetta F, Liserre M, Mastromauro RA (2012) Adaptive distributed MPPT algorithm for photovoltaic systems. In: 38th annual conference on IEEE Industrial Electronics Society, pp 5708–5713

    Google Scholar 

  34. Mosa M, Abu Rub H, Ahmed ME, Rodriguez J (2012) Modified MPPT with using model predictive control for multilevel boost converter. In 38th annual conference on IEEE Industrial Electronics Society, pp 5080–5085

    Google Scholar 

  35. Jones DC, Erickson RW (2013) Probabilistic analysis of a generalized perturb and observe algorithm featuring robust operation in the presence of power curve traps. IEEE Trans Power Electron 28(6):2912–2926

    Article  Google Scholar 

  36. Ingegnoli A, Iannopollo A (2010) A maximum power point tracking algorithm for stand-alone photovoltaic systems controlled by low computational power devices. In: IEEE Mediterranean Electrotechnical Conference (MELECON), pp 1522–1527

    Google Scholar 

  37. Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems, 2nd edn. Pearson Education Limited

    Google Scholar 

  38. Purnama I, Lo YK, Chiu HJ (2011) A fuzzy control maximum power point tracking photovoltaic system. In: IEEE international conference on Fuzzy Systems (FUZZ-IEEE), pp 2432–2439

    Google Scholar 

  39. Chiu CS (2010) T-S Fuzzy maximum power point tracking control of solar power generation systems. IEEE Trans Energy Convers 25(4):1123–1132

    Article  Google Scholar 

  40. Chiu CS, Ouyang YL (2011) Robust maximum power tracking control of uncertain photovoltaic systems: a unified T-S Fuzzy model-based approach. IEEE Trans Control Syst Technol 19(6):1516–1526

    Article  Google Scholar 

  41. Mishra S, Sekhar PC (2012) Ts fuzzy based adaptive perturb algorithm for MPPT of a grid connected single stage three phase VSC interfaced PV generating system. In: IEEE Power and Energy Society General Meeting, pp 1–7

    Google Scholar 

  42. Alabedin AMZ, El-Saadany EF, Salama MMA (2011) Maximum power point tracking for Photovoltaic systems using fuzzy logic and artificial neural networks. In: IEEE Power and Energy Society General Meeting, pp 1–9

    Google Scholar 

  43. Noman AM, Addoweesh KE, Mashaly HM (2012) A fuzzy logic control method for MPPT of PV systems. In: 38th annual conference on IEEE Industrial Electronics Society, pp 874–880

    Google Scholar 

  44. Al Nabulsi A, Dhaouadi R (2012) Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE Trans Ind Inf 8(3):573–584

    Article  Google Scholar 

  45. Garraoui R, Sbita L, Ben Hamed M (2013) MPPT controller for a photovoltaic power system based on fuzzy logic. In 10th international multi-conferences on systems, signals & devices 2013 (SSD13), pp 1–6

    Google Scholar 

  46. Rahim NA, Che Soh A, Radzi MAM, Zainuri MAAM (2014) Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter. IET Renew Power Gener 8(2):183–194

    Article  Google Scholar 

  47. Mishra S, Sekhar PC (2014) Takagi-Sugeno fuzzy-based incremental conductance algorithm for maximum power point tracking of a photovoltaic generating system. IET Renew Power Gener 8(8):900–914

    Article  Google Scholar 

  48. Lee HH, Phuong LM, Dzung PQ, Vu NTD, Khoa LD (2010) The new maximum power point tracking algorithm using ANN-based solar PV systems. In: IEEE Region 10 conference, pp 2179–2184

    Google Scholar 

  49. Islam MA, Kabir MA (2011) Neural network based maximum power point tracking of photovoltaic arrays. In: IEEE Region 10 Conference, pp 79–82

    Google Scholar 

  50. Ishaque K, Salam Z, Amjad M, Mekhilef S (2012) An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady state oscillation. IEEE Trans Power Electron 27(8):3627–3638

    Article  Google Scholar 

  51. Jain S, Agarwal V (2007) Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. IET Electr Power Appl 1(5):753–762

    Article  Google Scholar 

  52. Dineshkumar T, Subramani M (2013) Design and implementation maximum power point Tracking in photovoltaic cells. In: International conference on energy efficient technologies for sustainability, pp 792–795

    Google Scholar 

  53. Pai FS, Chao RM, Ko SH, Lee TS (2010) Performance evaluation of parabolic prediction to maximum power point tracking for PV array. IEEE Trans Sustain Energy 2(1):60–68

    Google Scholar 

  54. Kimball JW, Krein PT (2008) Discrete-time ripple correlation control for maximum power point tracking. IEEE Trans Power Electron 23(5):2353–2362

    Article  Google Scholar 

  55. Bazzi AM, Krein PT (2011) Concerning ‘maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control’. IEEE Trans Power Electron 26(6):1611–1612

    Article  Google Scholar 

  56. Esram T, Kimball JW, Krein PT, Chapman PL, Midya P (2006) Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans Power Electron 21(5):1282–1291

    Article  Google Scholar 

  57. Barth C, Pilawa-Podgurski RCN (2015) Dithering digital ripple correlation control for photovoltaic maximum power point tracking. IEEE Trans Power Electron 30(8):4548–4559

    Article  Google Scholar 

  58. Li X, Li Y, Seem JE, Lei P (2011) Maximum power point tracking for photovoltaic systems using adaptive extremum seeking control. In: IEEE conference on decision and control and European Control Conference, pp 1503–1508

    Google Scholar 

  59. Moura SJ, Chang YA (2010) Asymptotic convergence through Lyapunov-based switching in extremum seeking with application to photovoltaic systems. In: American Control Conference, pp 3542–3548

    Google Scholar 

  60. Wang P, Zhu H, Shen W, Choo FH, Loh PC, Tan KK (2010) A novel approach of maximizing energy harvesting in photovoltaic systems based on bisection search theorem. In: IEEE Applied Power Electronics Conference and Exposition (APEC), pp 2143–2148

    Google Scholar 

  61. Shiota N, Phimmasone V, Abe T, Miyatake M (2013) A MPPT algorithm based on the binary-search technique with ripples from a converter. In: International conference on Electrical Machines and Systems (ICEMS), pp 1718–1721

    Google Scholar 

  62. Tang L, Xu W, Zeng C, Dorrell D, Yu X (2012) A linear-prediction maximum power point tracking algorithm for photovoltaic power generation. In: 38th annual conference on IEEE Industrial Electronics Society, pp 3334–3339

    Google Scholar 

  63. Dunford WG, Palmer PR, Capel A (2007) Application of centered differentiation and steepest descent to maximum power point tracking. IEEE Trans Ind Electron 54(5):2539–2549

    Article  Google Scholar 

  64. Young KD, Utkin VI, Ozguner U (1999) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Tech 7(3):328–342

    Article  Google Scholar 

  65. Hung JY, Gao W, Hung JC (1993) Variable structure control: a survey. IEEE Trans Ind Electron 40(1):2–22

    Article  Google Scholar 

  66. Bianconi E, Calvente J, Giral R, Mamarelis E, Petrone G, Ramos-Paja CA, Spagnuolo G, Vitelli M (2013) A fast current-based MPPT technique employing sliding mode control. IEEE Trans Ind Electron 60(3):1168–1178

    Article  Google Scholar 

  67. Hussain A, Kumar A, Behera L (2013) Sliding mode control of a buck converter for maximum power point tracking of a solar panel. In: IEEE International conference on Control Applications (CCA), pp 661–666

    Google Scholar 

  68. Jimenez-Brea E, Salazar-Llinas A, Ortiz-Rivera E, Gonzalez-Llorente J (2010) A maximum power point tracker implementation for photovoltaic cells using dynamic optimal voltage tracking. In: 25th annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp 2161–2165

    Google Scholar 

  69. Levron Y, Shmilovitz D (2013) Maximum power point tracking employing sliding mode control. IEEE Trans Circ Syst I, Reg Pap 60(3):724–732

    Article  MathSciNet  Google Scholar 

  70. Shmilovitz D (2005) On the control of photovoltaic maximum power point tracker via output parameters. IEE Proc—Electr Power Appl 152(2):239–248

    Article  Google Scholar 

  71. Amaratunga GAJ, Urayai C (2013) Single-sensor maximum power point tracking algorithms. IET Renew Power Gener 7(1):82–88

    Article  Google Scholar 

  72. Patel H, Agarwal V (2009) MPPT Scheme for a PV-Fed Single-Phase Single-Stage Grid-Connected Inverter Operating in CCM With Only One Current Sensor. IEEE Trans Energy Convers 24(1):256–263

    Article  Google Scholar 

  73. Abu Qahouq JA (2011) Multiple solar panels maximum power point tracking using the output current. In: IEEE 33rd International Telecommunications Energy Conference (INTELEC), pp 1–5

    Google Scholar 

  74. Dallago E, Finarelli DG, Gianazza UP, Barnabei AL, Liberale A (2013) Theoretical and experimental analysis of an MPP detection algorithm employing a single-voltage sensor only and a noisy signal. IEEE Trans Power Electron 28(11):5088–5097

    Article  Google Scholar 

  75. Jiang Y, Abu Qahouq JA (2012) Single-sensor multi-channel maximum power point tracking controller for photovoltaic solar systems. IET Power Electron 5(8):1581–1592

    Article  Google Scholar 

  76. Chikh A, Chandra A (2015) An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimated. IEEE Trans Sustain Energy 6(2):644–652

    Article  Google Scholar 

  77. Dallago E, Liberale A, Miotti D, Venchi G (2015) Direct MPPT algorithm for PV sources with only voltage measurements. IEEE Trans Power Electron 30(12):6742–6750

    Article  Google Scholar 

  78. Metry M, Shadmand MB, Liu Y, Balog RS, Abu Rub H (2015) Maximum power point tracking of photovoltaic systems using sensorless current-based model predictive control. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp 6635–6641

    Google Scholar 

  79. Koutroulis E, Blaabjerg F (2012) A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J Photovolt 2(2):184–190

    Article  Google Scholar 

  80. Wang D (2010) A method for instantaneous measurement of PV VI characteristics and its application for MPPT control. In: IEEE Photovoltaic Specialists Conference, pp 2904–2907

    Google Scholar 

  81. Spertino F, Ahmad J, Ciocia A, Di Leo P (2015) A technique for tracking the global maximum power point of photovoltaic arrays under partial shading conditions. In: IEEE Power Electronics for Distributed Generation Systems (PEDG), pp 1–5

    Google Scholar 

  82. Miyatake M, Inada T, Hiratsuka I, Hongyan Z, Otsuka H, Nakano M (2004) Control characteristics of a fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded. In: International Power Electronics and Motion Control Conference (IPEMC), vol 2, pp 816–821

    Google Scholar 

  83. Yang CY, Hsieh CY, Feng FK, Chen KH (2012) Highly efficient analog maximum power point tracking (AMPPT) in a photovoltaic system. IEEE Trans Circ Syst I Reg Pap 59(7):1546–1556

    Article  MathSciNet  Google Scholar 

  84. Lei P, Li Y, Chen Q, Seem JE (2010) Extremum seeking control based integration of MPPT and degradation detection for photovoltaic arrays. In: American Control Conference (ACC), pp 3536–3541

    Google Scholar 

  85. Kazmi S, Goto H, Ichinokura O, Hai-Jiao G (2009) An improved and very efficient MPPT controller for PV systems subjected to rapidly varying atmospheric conditions and partial shading. In: Australasian Universities Power Engineering Conference (AUPEC), pp 1–6

    Google Scholar 

  86. Bifaretti S, Iacovone V, Cina L, Buffone E (2012) Global MPPT method for partially shaded photovoltaic modules. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp 4768–4775

    Google Scholar 

  87. Kobayashi K, Takano I, Sawada Y (2003) A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. IEEE Power Eng Soc Gen Meet 4:2617

    Google Scholar 

  88. Sokolov M, Shmilovitz D (2008) A modified MPPT scheme for accelerated convergence. IEEE Trans Energy Convers 23(4):1105–1107

    Article  Google Scholar 

  89. Kabir S, Bansal R, Nadarajah M (2012) Effects of partial shading on photovoltaic with advanced MPPT scheme. In: IEEE International Conference on Power and Energy (PECon), pp 354–359

    Google Scholar 

  90. Lian KL, Jhang JH, Tian IS (2014) A Maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization. IEEE J Photovolt 4(2):626–633

    Article  Google Scholar 

  91. Patel H, Agarwal V (2008) Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans Ind Electron 55(4):1689–1698

    Article  Google Scholar 

  92. Tey KS, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 61(10):5384–5392

    Article  Google Scholar 

  93. Escobar G, Ho CNM, Pettersson S (2012) Maximum power point searching method for partial shaded PV strings. In: IEEE Industrial Electronics Society Conference (IECON), pp 5726–5731

    Google Scholar 

  94. Boztepe M, Guinjoan F, Velasco-Quesada G, Silvestre S, Chouder A, Karatepe E (2014) Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm. IEEE Trans Ind Electron 61(7):3302–3312

    Article  Google Scholar 

  95. Nguyen TL, Low KS (2010) A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems. IEEE Trans Ind Electron 57(10):3456–3467

    Article  Google Scholar 

  96. Ramaprabha R, Mathur B, Ravi A, Aventhika S (2010) Modified fibonacci search based MPPT scheme for SPVA under partial shaded conditions. In: International Conference on Emerging Trends in Engineering and Technology (ICETET), pp 379–384

    Google Scholar 

  97. Miyatake M, Veerachary M, Toriumi F, Fujii N, Ko H (2011) Maximum power point tracking of multiple photovoltaic arrays: a PSO approach. IEEE Trans Aerosp Electron Syst 47(1):367–380

    Article  Google Scholar 

  98. Ishaque K, Salam Z (2013) A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. IEEE Trans Ind Electron 60(8):3195–3206

    Google Scholar 

  99. Dhas BGS, Deepa SN (2013) A hybrid PSO and GSA-based maximum power point tracking algorithm for PV systems. In: IEEE international conference on computational intelligence and computing research, pp 1–4

    Google Scholar 

  100. Sundareswaran K, Peddapati S, Palani S (2014) MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies. IEEE Trans Energy Convers 29(2):463–472

    Article  Google Scholar 

  101. Azam MA, Abdullah-Al-Nahid S, Kabir MA, Chowdhury SMH (2012) Microcontroller based maximum power tracking of PV using stimulated annealing algorithm. In: International Conference on Informatics, Electronics & Vision (ICIEV), pp 298–303

    Google Scholar 

  102. Lyden S, Haque ME (2015) A simulated annealing global maximum power point tracking approach for PV modules under partial shading conditions. IEEE Trans Power Electron, vol (in press)

    Google Scholar 

  103. Lyden S, Haque ME (2014) Comparison of the Perturb and Observe and simulated annealing approaches for maximum power point tracking in a photovoltaic system under partial shading conditions. In IEEE Energy Conversion Congress and Exposition (ECCE), pp 2517–2523

    Google Scholar 

  104. Yang Y, Pei W, Qi Z (2012) Optimal sizing of renewable energy and CHP hybrid energy microgrid system. In: IEEE PES Innovative Smart Grid Technol 1–5

    Google Scholar 

  105. Poole DL, Mackworth AK (2010) Artificial intelligence: foundations of computational agents. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  106. Cohn H, Fielding MJ (1999) Simulated annealing: searching for an optimal temperature schedule. SIAM J Optim 9(3):779–802

    Article  MathSciNet  MATH  Google Scholar 

  107. Lyden S, Haque ME (2015) A hybrid simulated annealing and perturb and observe method for maximum power point tracking in PV systems under partial shading conditions. In: Australasian Universities Power Engineering Conference (AUPEC), pp 1–6

    Google Scholar 

  108. Zhou L, Chen Y, Guo K, Jia F (2011) New approach for MPPT control of photovoltaic system with mutative scale dual carrier chaotic search. IEEE Trans Power Electron 26(4):1038–1048

    Article  Google Scholar 

  109. Konstantopoulos C, Koutroulis E (2014) Global maximum power point tracking of flexible photovoltaic modules. IEEE Trans Power Electron 29(6):2817–2828

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enamul Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lyden, S., Haque, M.E., Mahmud, M.A. (2016). Maximum Power Point Tracking Methods for PV Systems. In: Islam, M., Rahman, F., Xu, W. (eds) Advances in Solar Photovoltaic Power Plants. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50521-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50521-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50519-9

  • Online ISBN: 978-3-662-50521-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics