Skip to main content

Physio logie von Nozizeption und Schmerz

  • Chapter
Schmerzpsychotherapie

Zusammenfassung

Das nozizeptive System ist ein Subsystem der Somatosensorik mit sog. Nozizeptoren, spezifischen Sensoren zur Entdeckung faktisch oder potenziell schädigender Einwirkungen auf das Körpergewebe. Die Eigenschaften und Polymodalität der Nozizeptoren werden funktionell und molekular beschrieben. Die Eigenschaften der Zielneurone, die Besonderheiten der synaptischen Umschaltung im Rückenmark sowie der zum Gehirn aufsteigenden Bahnen werden ebenso erörtert wie die supraspinale Organisation des nozizeptiven Systems und die Rolle von Thalamus, Amygdala und Kortex. Einen besonderen Stellenwert haben die mannigfachen Plastizitätsmechanismen des nozizeptiven Systems: periphere und zentrale Sensibilisierung sowie synaptische Langzeitpotenzierung. Dies leitet über zu einem Exkurs in die Pathophysiologie des nozizeptiven Systems bei peripheren oder zentralen Läsionen (neuropathischer Schmerz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463–484

    Google Scholar 

  • Brooks J, Tracey I (2005) From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 207: 19–33

    Google Scholar 

  • Bushnell MC, Basbaum AI (2008) The Senses: a Comprehensive Reference, vol. 5: Pain. Academic Press, London Oxford Boston New York San Diego

    Google Scholar 

  • Campbell J, Meyer RA (1983) Sensitization of unmyelinated nociceptive afferents in monkey varies with skin type. J Neurophysiol 49: 98–110

    Google Scholar 

  • Cervero F, Jensen TS (2006) Handbook of Clinical Neurology, vol. 81: Pain. Elsevier, Edinburgh

    Google Scholar 

  • Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, Reading AE (1985) Pain measurement: an overview. Pain 22:1–31

    Google Scholar 

  • Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129: 1659–1673

    Google Scholar 

  • Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Ann Rev Neurosci 32: 1–32

    Google Scholar 

  • Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438: 1017–1021

    Google Scholar 

  • Devor M, Wall PD, Catalan N (1992) Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain 48: 261–268

    Google Scholar 

  • Fitzgerald M (2005) The development of nociceptive circuits. Nat Rev Neurosci 6: 507–520

    Google Scholar 

  • Gasser HS (1941) The classification of nerve fibers. Ohio J Sci 41: 145–159

    Google Scholar 

  • Gebhart GF, Schmidt RF WD (2013) Encyclopedia of Pain, 2nd ed. Springer, Berlin Heidelberg

    Google Scholar 

  • Greffrath W (2006) The capsaicin receptor. »TRPing« transduction for painful stimuli. Schmerz 20: 219–225

    Google Scholar 

  • Hartley C, Goksan S, Poorun R Brotherhood K, Mellado GS, Moultrie F, Rogers R, Adams E, Slater R (2015) The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants. Sci Rep 5: 12519

    Google Scholar 

  • Head H (1893) On the disturbances of sensation, with special reference to the pain of visceral disease. Brain 16: 1–133

    Google Scholar 

  • Henrich F, Magerl W, Klein T, Greffrath W, Treede RD (2015) Capsaicin-sensitive C and A-fiber nociceptors control LTP-like pain amplification in humans. Brain 138: 2505–2520

    Google Scholar 

  • Jänig W (2006) The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. Cambridge University Press, Cambridge New York

    Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413: 203–210

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessell T (2000) Principles of Neural Science. 4th ed. McGraw-Hill, New York

    Google Scholar 

  • Keller AF, Beggs S, Salter MW, De Koninck Y (2007) Transformation of the output of spinal Lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 3: 27

    Google Scholar 

  • Khasabov SG, Rogers SD, Ghilardi JR, Peters CM, Mantyh PW, Simone DA (2002) Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J Neurosci 22: 9086–9098

    Google Scholar 

  • Klein T, Magerl W, Hopf HC, Sandkühler J, Treede RD (2004) Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci 24: 964–971

    Google Scholar 

  • Klein T, Magerl W, Rolke R, Treede RD (2005) Human surrogate models of neuropathic pain. Pain 115: 227–233

    Google Scholar 

  • Lai J, Porreca F, Hunter JC, Gold MS (2004) Voltage-gated sodium channels and hyperalgesia. Ann Rev Pharmacol Toxicol 44: 371–397

    Google Scholar 

  • LaMotte RH, Thalhammer JG, Robinson CJ (1983) Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: a comparison of neural events in monkey with sensory judgments in human. J Neurophysiol 50: 1–26

    Google Scholar 

  • Lang S, Klein T, Magerl W, Treede RD (2007) Modality-specific sensory changes in humans after the induction of long-term potentiation (LTP) in cutaneous nociceptive pathways. Pain 128: 254–263

    Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10: 895–926

    Google Scholar 

  • Lewis T, Pochin EE (1937) The double pain response of the human skin to a single stimulus. Clin Sci 3: 67–79

    Google Scholar 

  • Liu X, Sandkühler J (1997) Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. J Neurophysiol 78: 1973–1982

    Google Scholar 

  • Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: 1079–1091

    Google Scholar 

  • Magerl W, Klein T (2006) Experimental models of neuropathic pain. In: Cervero F, Jensen TS (eds) Handbook of Clinical Neurology, vol. 81. Elsevier, Amsterdam, S 503–516

    Google Scholar 

  • Magerl W, Fuchs PN, Meyer RA, Treede RD (2001) Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain 124: 1754–1764

    Google Scholar 

  • Maier C, Baron R, Tölle T, Binder A, Birbaumer N, Birklein F, Gierthmühlen, Flor H, Geber C, Huge V, Krumova EK, Landwehrmeyer GB, Magerl W, Maihöfner C, Richter H, Rolke R, Scherens A, Schwarz A, Sommer C, Tronnier V, Ucjeyler N, Valet M, Wasner G, Treede RD (2010) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150: 439–450

    Google Scholar 

  • Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6: 521–532

    Google Scholar 

  • McMahon S, Koltzenburg M, Tracey I, Turk DC (eds) (2013) Wall and Melzack’s Textbook of Pain, 6th ed. Saunders/Elsevier, Philadelphia

    Google Scholar 

  • Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57: 1–164

    Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66: 355–474

    Google Scholar 

  • National Research Council (2009) Recognition and alleviation of pain in laboratory animals. National Academies Press, Washington

    Google Scholar 

  • Nauta HJW, Hewitt E, Westlund KN, Willis WD (1997) Surgical interruption of a midline dorsal column visceral pain pathway. Case report and review of the literature. J Neurosurg 86: 538–542

    Google Scholar 

  • Neugebauer V, Li W, Bird GC, Han JS (2004) The amygdala and persistent pain. Neuroscientist 10: 221–234

    Google Scholar 

  • Perl ER (2007) Ideas about pain, a historical view. Nat Rev Neurosci 8: 71–80

    Google Scholar 

  • Pfau DB, Klein T, Putzer, D, Pogatzki-Zahn E, Treede RD, Magerl W (2011) Analysis of hyperalgesia time courses in humans following painful electrical high-frequency stimulation identifies a possible transition from early to late LTP-like pain plasticity. Pain 152: 1532–1539

    Google Scholar 

  • Rayport SG, Kandel ER (1986) Development of plastic mechanisms related to learning at identified chemical synaptic connections in Aplysia. Neuroscience 17: 283–294

    Google Scholar 

  • Ringkamp M, Raja SN, Campbell J, Meyer RA (2013) Peripheral mechanisms of cutaneous nociception. In: McMahon S, Koltzenburg M, Tracey I, Turk DC (eds) Wall and Melzack’s Textbook of Pain, 6th ed. Saunders/Elsevier, Philadelphia, S 1–30

    Google Scholar 

  • Sandkühler J (2000) Learning and memory in pain pathways. Pain 88: 113–118

    Google Scholar 

  • Sato A, Sato Y, Schmidt RF (1997) The impact of somatosensory input on autonomic functions. Rev Physiol Biochem Pharmacol 130: 1–328

    Google Scholar 

  • Schaible HG, Schmidt RF (2007) Nozizeption und Schmerz. In: Schmidt RF, Lang F (Hrsg.) Physiologie des Menschen, 30. Aufl. Springer, Berlin Heidelberg, S 324–342

    Google Scholar 

  • Scholz J, Woolf CJ (2002) Can we conquer pain? Nat Neurosci 5 (Suppl): 1062–1067

    Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10: 1361–1368

    Google Scholar 

  • Treede RD (1995) Peripheral acute pain mechanisms. Ann Med 27: 213–216

    Google Scholar 

  • Treede RD (2010) Das somatosensorische System. In: Schmidt RF, Lang F, Heckmann M (Hrsg) Physiologie des Menschen, 31. Aufl. Springer, Berlin Heidelberg, S 272–297

    Google Scholar 

  • Treede RD (2013) Elektrophysiologische Messverfahren. In: Baron R, Koppert W, Strumpf M, Willweber-Strumpf A (Hrsg) Praktische Schmerztherapie, 3. Aufl. Springer, Berlin Heidelberg, S 95–102

    Google Scholar 

  • Treede RD, Apkarian AV (2008) Nociceptive processing in the cerebral cortex. In: Bushnell MC, Basbaum AI (eds) The Senses: a Comprehensive Reference, vol. 5: Pain. Academic Press, London Oxford Boston New York San Diego, S 669–697

    Google Scholar 

  • Treede RD, Magerl W (2000) Multiple mechanisms of secondary hyperalgesia. Prog Brain Res 129: 331–341

    Google Scholar 

  • Treede RD, Magerl W (2003) Zentrale nozizeptive Neurone und Bahnen. In: Egle UT, Hoffmann SO, Lehmann KA, Nix WA (Hrsg) Handbuch Chronischer Schmerz. Stuttgart, Schattauer, S 34–44

    Google Scholar 

  • Urban L, Thompson SW, Dray A (1994) Modulation of spinal excitability: co-operation between neurokinin and excitatory amino acid neurotransmitters. Trends Neurosci 17: 432–438

    Google Scholar 

  • Walters ET, Illich PA, Weeks JC, Lewin MR (2001) Defensive responses of larval Manduca sexta and their sensitization by noxious stimuli in the laboratory and field. J Exp Biol 204: 457–469

    Google Scholar 

  • Willis WD (1985) The Pain System. Karger, Basel

    Google Scholar 

  • Wood PB (2006) Mesolimbic dopaminergic mechanisms and pain control. Pain 120: 230–234

    Google Scholar 

  • Woolf CJ, Walters ET (1991) Common patterns of plasticity contributing to nociceptive sensitization in mammals and Aplysia. Trends Neurosci 14: 74–78

    Google Scholar 

  • Woolf CJ, Bennett GJ, Doherty M, Dubner R, Kidd B, Koltzenburg M, Lipton R, Loeser JD, Payne R, Torebjörk E (1998) Towards a mechanism-based classification of pain? Pain 77: 227–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magerl, W., Treede, RD. (2017). Physio logie von Nozizeption und Schmerz. In: Kröner-Herwig, B., Frettlöh, J., Klinger, R., Nilges, P. (eds) Schmerzpsychotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50512-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50512-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50511-3

  • Online ISBN: 978-3-662-50512-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics