Skip to main content

Experimental Lung Tumors

  • Chapter
  • First Online:
Pathology of Lung Disease
  • 2986 Accesses

Abstract

Mice, rats, and hamsters have been used as models for human lung cancer since several decades [1, 2]. In the past, mainly inhalation of tobacco smoke and other carcinogenic substances has been applied to these rodent species [3–6]. In most instances, lung carcinomas resembling the human counterpart could not be simulated with the exception of urethane-induced murine models. Moreover, rodents easily and spontaneously develop adenomas but not invasive carcinomas [7]. A cystic squamous lesion was induced in some experiments, which has been labeled as squamous cell carcinoma; however, this represents in essence bronchiectasis with squamous metaplasia and dysplasia, but never progressed into invasive squamous cell carcinoma [8, 9]. In recent time, genetically engineered lung carcinomas in mice became a tool to study carcinogenesis in adenocarcinomas and small-cell carcinomas. In this chapter, we will discuss progress as well as drawback by these different approaches in understanding human pulmonary carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oomen LC, Van der Valk MA, Den Engelse L. Tumour susceptibility in mice in relation to H-2 haplotype. IARC Sci Publ. 1983;51:205–21.

    Google Scholar 

  2. Schepers GW. Lung tumors of primates and rodents. II. IMS Ind Med Surg. 1971;40:23–31.

    CAS  PubMed  Google Scholar 

  3. Miller MS, Gressani KM, Leone-Kabler S, Townsend AJ, Malkinson AM, O’Sullivan MG. Differential sensitivity to lung tumorigenesis following transplacental exposure of mice to polycyclic hydrocarbons, heterocyclic amines, and lung tumor promoters. Exp Lung Res. 2000;26:709–30.

    Article  CAS  PubMed  Google Scholar 

  4. Yang G, Wang ZY, Kim S, Liao J, Seril DN, Chen X, Smith TJ, Yang CS. Characterization of early pulmonary hyperproliferation and tumor progression and their inhibition by black tea in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model with A/J mice. Cancer Res. 1997;57:1889–94.

    CAS  PubMed  Google Scholar 

  5. Malkinson AM. Primary lung tumors in mice: an experimentally manipulable model of human adenocarcinoma. Cancer Res. 1992;52:2670s–6.

    CAS  PubMed  Google Scholar 

  6. Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn Jr PA, Johnson GL, Hirsch FR, Merrick DT, Franklin WA, Baron AE, Keith RL, Nemenoff RA, Malkinson AM, Geraci MW. Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol. 2005;167:1763–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem. 2003;278:17036–43.

    Article  CAS  PubMed  Google Scholar 

  8. Heinrich U, Pott F, Mohr U, Fuhst R, Konig J. Lung tumours in rats and mice after inhalation of PAH-rich emissions. Exp Pathol. 1986;29:29–34.

    Article  CAS  PubMed  Google Scholar 

  9. Grimmer G, Abel U, Brune H, Deutsch-Wenzel R, Emura M, Heinrich U, Jacob J, Kemena A, Misfeld J, Mohr U, et al. Evaluation of environmental carcinogens by carcinogen-specific test systems. Exp Pathol. 1986;29:65–76.

    Article  CAS  PubMed  Google Scholar 

  10. Kitamura H, Tsubakihara M, Inayama Y, Ito T, Kanisawa M. Long-term maintenance of human distal airway epithelial cells in nude mice: a potentially useful model for the study of pulmonary carcinogenesis and lung cell biology. Lab Invest. 1990;62:383–9.

    CAS  PubMed  Google Scholar 

  11. Kool H, Mous D, Tibboel D, de Klein A, Rottier RJ. Pulmonary vascular development goes awry in congenital lung abnormalities. Birth Defects Res C Embryol Today. 2014;102:343–58.

    Article  CAS  Google Scholar 

  12. Erlandsson A, Forssell-Aronsson E, Seidal T, Bernhardt P. Binding of TS1, an anti-keratin 8 antibody, in small-cell lung cancer after 177Lu-DOTA-Tyr3-octreotate treatment: a histological study in xenografted mice. EJNMMI Res. 2011;1:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Weiss ID, Ella E, Dominsky O, Smith Y, Abraham M, Wald H, Shlomai Z, Zamir G, Feigelson SW, Shezen E, Bar-Shai A, Alon R, Izhar U, Peled A, Shapira OM, Wald O. In the hunt for therapeutic targets: mimicking the growth, metastasis, and stromal associations of early-stage lung cancer using a novel orthotopic animal model. J Thorac Oncol. 2015;10:46–58.

    Article  CAS  PubMed  Google Scholar 

  14. Gao Y, Li G, Sun L, He Y, Li X, Sun Z, Wang J, Jiang Y, Shi J. ACTN4 and the pathways associated with cell motility and adhesion contribute to the process of lung cancer metastasis to the brain. BMC Cancer. 2015;15:277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Truesdell P, Ahn J, Chander H, Meens J, Watt K, Yang X, Craig AW. CIP4 promotes lung adenocarcinoma metastasis and is associated with poor prognosis. Oncogene. 2015;34:3527–35.

    Article  CAS  PubMed  Google Scholar 

  16. Stewart EL, Mascaux C, Pham NA, Sakashita S, Sykes J, Kim L, Yanagawa N, Allo G, Ishizawa K, Wang D, Zhu CQ, Li M, Ng C, Liu N, Pintilie M, Martin P, John T, Jurisica I, Leighl NB, Neel BG, Waddell TK, Shepherd FA, Liu G, Tsao MS. Clinical utility of patient-derived xenografts to determine biomarkers of prognosis and map resistance pathways in EGFR-mutant lung adenocarcinoma. J Clin Oncol. 2015;33:2472–80.

    Article  CAS  PubMed  Google Scholar 

  17. Gallagher-Colombo SM, Miller J, Cengel KA, Putt ME, Vinogradov SA, Busch TM. Erlotinib pretreatment improves photodynamic therapy of non-small cell lung carcinoma xenografts via multiple mechanisms. Cancer Res. 2015;75:3118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gotz R, Sendtner M. Cooperation of tyrosine kinase receptor TrkB and epidermal growth factor receptor signaling enhances migration and dispersal of lung tumor cells. PLoS ONE. 2014;9:e100944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Huang MH, Lee JH, Chang YJ, Tsai HH, Lin YL, Lin AM, Yang JC. MEK inhibitors reverse resistance in epidermal growth factor receptor mutation lung cancer cells with acquired resistance to gefitinib. Mol Oncol. 2013;7:112–20.

    Article  CAS  PubMed  Google Scholar 

  20. Pallier K, Cessot A, Cote JF, Just PA, Cazes A, Fabre E, Danel C, Riquet M, Devouassoux-Shisheboran M, Ansieau S, Puisieux A, Laurent-Puig P, Blons H. TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma. PLoS ONE. 2012;7:e29954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bryant JL, Britson J, Balko JM, Willian M, Timmons R, Frolov A, Black EP. A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT. Br J Cancer. 2012;106:148–56.

    Article  CAS  PubMed  Google Scholar 

  22. Slaga TJ. Overview of tumor promotion in animals. Environ Health Perspect. 1983;50:3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sunderman Jr FW. Nickel carcinogenesis. Dis Chest. 1968;54:527–34.

    Article  PubMed  Google Scholar 

  24. Nuzum EO, Malkinson AM, Beer DG. Specific Ki-ras codon 61 mutations may determine the development of urethan-induced mouse lung adenomas or adenocarcinomas. Mol Carcinog. 1990;3:287–95.

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe M, Watanabe K, Konno K, Sato H. Genetic differences in the induction of aryl hydrocarbon hydroxylase and benzo(a)pyrene carcinogenesis in C3H/He and DBA/2 strains of mice. Gan. 1975;66:217–26.

    CAS  PubMed  Google Scholar 

  26. Henry MC, Port CD, Kaufman DG. Importance of physical properties of benzo(a)pyrene-ferric oxide mixtures in lung tumor induction. Cancer Res. 1975;35:207–17.

    CAS  PubMed  Google Scholar 

  27. Saffiotti U, Montesano R, Sellakumar AR, Cefis F, Kaufman DG. Respiratory tract carcinogenesis in hamsters induced by different numbers of administrations of benzo(a)pyrene and ferric oxide. Cancer Res. 1972;32:1073–81.

    CAS  PubMed  Google Scholar 

  28. Toth B, Shubik P. Carcinogenesis in AKR mice injected at birth with benzo(a)pyrene and dimethylnitrosamine. Cancer Res. 1967;27:43–51.

    CAS  PubMed  Google Scholar 

  29. Miller L, Smith WE, Berliner SW. Tests for effect of asbestos on benzo[a]pyrene carcinogenesis in the respiratory tract. Ann N Y Acad Sci. 1965;132:489–500.

    Article  CAS  PubMed  Google Scholar 

  30. Bodduluru LN, Kasala ER, Barua CC, Karnam KC, Dahiya V, Ellutla M. Antiproliferative and antioxidant potential of hesperetin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Chem Biol Interact. 2015;242:345–52.

    Article  CAS  PubMed  Google Scholar 

  31. Ravichandran N, Suresh G, Ramesh B, Manikandan R, Choi YW, Vijaiyan Siva G. Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer. Mol Cell Biochem. 2014;390:225–34.

    Article  CAS  PubMed  Google Scholar 

  32. Zuo J, Brewer DS, Arlt VM, Cooper CS, Phillips DH. Benzo pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genomics. 2014;15:880.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yeo CD, Kim JW, Ha JH, Kim SJ, Lee SH, Kim IK, Kim YK. Chemopreventive effect of phosphodiesterase-4 inhibition in benzo(a)pyrene-induced murine lung cancer model. Exp Lung Res. 2014;40:500–6.

    Article  CAS  PubMed  Google Scholar 

  34. Horio Y, Chen A, Rice P, Roth JA, Malkinson AM, Schrump DS. Ki-ras and p53 mutations are early and late events, respectively, in urethane-induced pulmonary carcinogenesis in A/J mice. Mol Carcinog. 1996;17:217–23.

    Article  CAS  PubMed  Google Scholar 

  35. Santiago LN, de Camargo FJ, Braga LC, Cordeiro JA, Cury PM. The effect of different doses of cigarette smoke in a mouse lung tumor model. Int J Clin Exp Pathol. 2009;2:176–81.

    CAS  PubMed  Google Scholar 

  36. Westcott PM, Halliwill KD, To MD, Rashid M, Rust AG, Keane TM, Delrosario R, Jen KY, Gurley KE, Kemp CJ, Fredlund E, Quigley DA, Adams DJ, Balmain A. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature. 2015;517:489–92.

    Article  CAS  PubMed  Google Scholar 

  37. Lee HY, Suh YA, Lee JI, Hassan KA, Mao L, Force T, Gilbert BE, Jacks T, Kurie JM. Inhibition of oncogenic K-ras signaling by aerosolized gene delivery in a mouse model of human lung cancer. Clin Cancer Res. 2002;8:2970–5.

    CAS  PubMed  Google Scholar 

  38. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, Jacks T. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 2005;65:10280–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C, Mesirov J, Golub TR, Jacks T. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet. 2005;37:48–55.

    CAS  PubMed  Google Scholar 

  40. Wootton SK, Metzger MJ, Hudkins KL, Alpers CE, York D, DeMartini JC, Miller AD. Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV) closely resembles lung cancer in sheep infected with JSRV. Retrovirology. 2006;3:94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lee GH. The Kras2 oncogene and mouse lung carcinogenesis. Med Mol Morphol. 2008;41:199–203.

    Article  CAS  PubMed  Google Scholar 

  42. Kim CF, Jackson EL, Kirsch DG, Grimm J, Shaw AT, Lane K, Kissil J, Olive KP, Sweet-Cordero A, Weissleder R, Jacks T. Mouse models of human non-small-cell lung cancer: raising the bar. Cold Spring Harb Symp Quant Biol. 2005;70:241–50.

    Article  CAS  PubMed  Google Scholar 

  43. Minna JD, Kurie JM, Jacks T. A big step in the study of small cell lung cancer. Cancer Cell. 2003;4:163–6.

    Article  CAS  PubMed  Google Scholar 

  44. DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4:1064–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou Y, Rideout 3rd WM, Zi T, Bressel A, Reddypalli S, Rancourt R, Woo JK, Horner JW, Chin L, Chiu MI, Bosenberg M, Jacks T, Clark SC, Depinho RA, Robinson MO, Heyer J. Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nat Biotechnol. 2010;28:71–8.

    Article  CAS  PubMed  Google Scholar 

  46. Musteanu M, Blaas L, Zenz R, Svinka J, Hoffmann T, Grabner B, Schramek D, Kantner HP, Muller M, Kolbe T, Rulicke T, Moriggl R, Kenner L, Stoiber D, Penninger JM, Popper H, Casanova E, Eferl R. A mouse model to identify cooperating signaling pathways in cancer. Nat Methods. 2012;9:897–900.

    Article  CAS  PubMed  Google Scholar 

  47. McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, Stewart C, Carter SL, Cibulskis K, Bhutkar A, McKenna A, Dooley A, Vernon A, Sougnez C, Malstrom S, Heimann M, Park J, Chen F, Farago AF, Dayton T, Shefler E, Gabriel S, Getz G, Jacks T. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell. 2014;156:1298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Popper HH. Lung adenocarcinomas: comparison between mice and men. Methods Mol Biol. 2015;1267:19–43.

    Article  CAS  PubMed  Google Scholar 

  49. Banerjee ER, Henderson Jr WR. Characterization of lung stem cell niches in a mouse model of bleomycin-induced fibrosis. Stem Cell Res Ther. 2012;3:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koukourakis MI, Giatromanolaki A, Brekken RA, Sivridis E, Gatter KC, Harris AL, Sage EH. Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients. Cancer Res. 2003;63:5376–80.

    CAS  PubMed  Google Scholar 

  51. O’Byrne KJ, Dalgleish AG, Browning MJ, Steward WP, Harris AL. The relationship between angiogenesis and the immune response in carcinogenesis and the progression of malignant disease. Eur J Cancer. 2000;36:151–69.

    Article  PubMed  Google Scholar 

  52. Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P, Monnot C, Germain S. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci U S A. 2006;103:18721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu YL, Yu JM, Song XR, Wang XW, Xing LG, Gao BB. Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther. 2006;5:1320–6.

    Article  CAS  PubMed  Google Scholar 

  54. Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M. Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci. 2003;94:593–7.

    Article  CAS  PubMed  Google Scholar 

  55. Eger A, Stockinger A, Park J, Langkopf E, Mikula M, Gotzmann J, Mikulits W, Beug H, Foisner R. beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene. 2004;23:2672–80.

    Article  CAS  PubMed  Google Scholar 

  56. Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, Mikulits W. Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res. 2004;566:9–20.

    Article  CAS  PubMed  Google Scholar 

  57. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lan M, Kojima T, Osanai M, Chiba H, Sawada N. Oncogenic Raf-1 regulates epithelial to mesenchymal transition via distinct signal transduction pathways in an immortalized mouse hepatic cell line. Carcinogenesis. 2004;25:2385–95.

    Article  CAS  PubMed  Google Scholar 

  59. Grego-Bessa J, Diez J, Timmerman L, de la Pompa JL. Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle. 2004;3:718–21.

    Article  CAS  PubMed  Google Scholar 

  60. Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. Embo J. 2004;23:1155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yao HW, Xie QM, Chen JQ, Deng YM, Tang HF. TGF-beta1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci. 2004;76:29–37.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6:931–40.

    Article  CAS  PubMed  Google Scholar 

  63. Blaukovitsch M, Halbwedl I, Kothmaier H, Gogg-Kammerer M, Popper HH. Sarcomatoid carcinomas of the lung – are these histogenetically heterogeneous tumors? Virchows Arch. 2006;449:455–61.

    Article  CAS  PubMed  Google Scholar 

  64. Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, Kurie JM. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009;23:2140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramos C, Becerril C, Montano M, Garcia-De-Alba C, Ramirez R, Checa M, Pardo A, Selman M. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am J Physiol Lung Cell Mol Physiol. 2010;299:L222–31.

    Article  CAS  PubMed  Google Scholar 

  66. Masszi A, Kapus A. Smaddening complexity: the role of Smad3 in epithelial-myofibroblast transition. Cells Tissues Organs. 2011;193:41–52.

    Article  CAS  PubMed  Google Scholar 

  67. Borczuk AC, Kim HK, Yegen HA, Friedman RA, Powell CA. Lung adenocarcinoma global profiling identifies type II transforming growth factor-beta receptor as a repressor of invasiveness. Am J Respir Crit Care Med. 2005;172:729–37.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gibbons DL, Lin W, Creighton CJ, Zheng S, Berel D, Yang Y, Raso MG, Liu DD, Wistuba II, Lozano G, Kurie JM. Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma. PLoS ONE. 2009;4:e5401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Matsuzaki O. Histogenesis and growing patterns of lung tumors induced by potassium 1-methyl-1,4-dihydro-7-(2-(5-nitrofuryl)vinyl)-4-oxo-1,8-naphthyridine-3-carboxylate in ICR mice. Gann. 1975;66:259–67.

    CAS  PubMed  Google Scholar 

  70. Rehm S, Kelloff GJ. Histologic characterization of mouse bronchiolar cell hyperplasia, metaplasia, and neoplasia induced intratracheally by 3-methylcholanthrene. Exp Lung Res. 1991;17:229–44.

    Article  CAS  PubMed  Google Scholar 

  71. Malkinson AM. Molecular comparison of human and mouse pulmonary adenocarcinomas. Exp Lung Res. 1998;24:541–55.

    Article  CAS  PubMed  Google Scholar 

  72. Nikitin AY, Alcaraz A, Anver MR, Bronson RT, Cardiff RD, Dixon D, Fraire AE, Gabrielson EW, Gunning WT, Haines DC, Kaufman MH, Linnoila RI, Maronpot RR, Rabson AS, Reddick RL, Rehm S, Rozengurt N, Schuller HM, Shmidt EN, Travis WD, Ward JM, Jacks T. Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res. 2004;64:2307–16.

    Article  CAS  PubMed  Google Scholar 

  73. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, Garg K, Austin JH, Asamura H, Rusch VW, Hirsch FR, Scagliotti G, Mitsudomi T, Huber RM, Ishikawa Y, Jett J, Sanchez-Cespedes M, Sculier JP, Takahashi T, Tsuboi M, Vansteenkiste J, Wistuba I, Yang PC, Aberle D, Brambilla C, Flieder D, Franklin W, Gazdar A, Gould M, Hasleton P, Henderson D, Johnson B, Johnson D, Kerr K, Kuriyama K, Lee JS, Miller VA, Petersen I, Roggli V, Rosell R, Saijo N, Thunnissen E, Tsao M, Yankelewitz D. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Travis WD. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod Pathol. 2012;25 Suppl 1:S18–30.

    Article  CAS  PubMed  Google Scholar 

  75. Maeshima A, Miyagi A, Hirai T, Nakajima T. Mucin-producing adenocarcinoma of the lung, with special reference to goblet cell type adenocarcinoma: immunohistochemical observation and Ki-ras gene mutation. Pathol Int. 1997;47:454–60.

    Article  CAS  PubMed  Google Scholar 

  76. Dabbagh K, Takeyama K, Lee HM, Ueki IF, Lausier JA, Nadel JA. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J Immunol. 1999;162:6233–7.

    CAS  PubMed  Google Scholar 

  77. Yamamoto H, Bai YQ, Yuasa Y. Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression. Biochem Biophys Res Commun. 2003;300:813–8.

    Article  CAS  PubMed  Google Scholar 

  78. Stacher E, Ullmann R, Halbwedl I, Gogg-Kammerer M, Boccon-Gibod L, Nicholson AG, Sheppard MN, Carvalho L, Franca MT, Macsweeney F, Morresi-Hauf A, Popper HH. Atypical goblet cell hyperplasia in congenital cystic adenomatoid malformation as a possible preneoplasia for pulmonary adenocarcinoma in childhood: a genetic analysis. Hum Pathol. 2004;35:565–70.

    Article  CAS  PubMed  Google Scholar 

  79. Maeda Y, Tsuchiya T, Hao H, Tompkins DH, Xu Y, Mucenski ML, Du L, Keiser AR, Fukazawa T, Naomoto Y, Nagayasu T, Whitsett JA. Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. J Clin Invest. 2012;122:4388–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Popper HH, Woldrich A. Oxygen radical formation a probable mechanism for chromate toxicity. Prog Histochem Cytochem. 1991;23:220–6.

    Article  CAS  PubMed  Google Scholar 

  81. Popper HH, Wiespainer G, Leingartner E, Weybora W, Ratschek M. Short term chromate inhalation in a computer-assisted inhalation chamber: immediate toxicity and late cancer development. Environ Hyg. 1992;3:127–31.

    Google Scholar 

  82. Reid L, Meyrick B, Antony VB, Chang LY, Crapo JD, Reynolds HY. The mysterious pulmonary brush cell: a cell in search of a function. Am J Respir Crit Care Med. 2005;172:136–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sbarbati A, Osculati F. A new fate for old cells: brush cells and related elements. J Anat. 2005;206:349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Geles A, Gruber-Moesenbacher U, Quehenberger F, Manzl C, Al Effah M, Grygar E, Juettner-Smolle F, Popper HH. Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival. Virchows Arch. 2015;467:675–86.

    Article  CAS  PubMed  Google Scholar 

  85. Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, Grattan KM, Nadel JA. Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci U S A. 1999;96:3081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rose MC, Piazza FM, Chen YA, Alimam MZ, Bautista MV, Letwin N, Rajput B. Model systems for investigating mucin gene expression in airway diseases. J Aerosol Med. 2000;13:245–61.

    Article  CAS  PubMed  Google Scholar 

  87. Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore 3rd RF, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22:2184–91.

    Article  CAS  PubMed  Google Scholar 

  88. Zuhdi Alimam M, Piazza FM, Selby DM, Letwin N, Huang L, Rose MC. Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am J Respir Cell Mol Biol. 2000;22:253–60.

    Article  CAS  PubMed  Google Scholar 

  89. Yamauchi K, Piao HM, Nakadate T, Shikanai T, Nakamura Y, Ito H, Mouri T, Kobayashi H, Maesawa C, Sawai T, Ohtsu H, Inoue H. Enhanced goblet cell hyperplasia in HDC knockout mice with allergic airway inflammation. Allergol Int. 2009;58:125–34.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang X, Zhang Y, Tao B, Wang D, Cheng H, Wang K, Zhou R, Xie Q, Ke Y. Docking protein Gab2 regulates mucin expression and goblet cell hyperplasia through TYK2/STAT6 pathway. FASEB J. 2012;26:4603–13.

    Article  CAS  PubMed  Google Scholar 

  91. Abdullah LH, Wolber C, Kesimer M, Sheehan JK, Davis CW. Studying mucin secretion from human bronchial epithelial cell primary cultures. Methods Mol Biol. 2012;842:259–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Linnoila RI, Sahu A, Miki M, Ball DW, DeMayo FJ. Morphometric analysis of CC10-hASH1 transgenic mouse lung: a model for bronchiolization of alveoli and neuroendocrine carcinoma. Exp Lung Res. 2000;26:595–615.

    Article  CAS  PubMed  Google Scholar 

  93. Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002;161:173–82.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Berns A. Stem cells for lung cancer? Cell. 2005;121:811–3.

    Article  CAS  PubMed  Google Scholar 

  95. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.

    Article  CAS  PubMed  Google Scholar 

  96. Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, De Langhe SP. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest. 2011;121:4409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van Winkle LS, Buckpitt AR, Nishio SJ, Isaac JM, Plopper CG. Cellular response in naphthalene-induced Clara cell injury and bronchiolar epithelial repair in mice. Am J Physiol. 1995;269:L800–18.

    PubMed  Google Scholar 

  98. Buckpitt A, Boland B, Isbell M, Morin D, Shultz M, Baldwin R, Chan K, Karlsson A, Lin C, Taff A, West J, Fanucchi M, Van Winkle L, Plopper C. Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity. Drug Metab Rev. 2002;34:791–820.

    Article  CAS  PubMed  Google Scholar 

  99. Abdo KM, Grumbein S, Chou BJ, Herbert R. Toxicity and carcinogenicity study in F344 rats following 2 years of whole-body exposure to naphthalene vapors. Inhal Toxicol. 2001;13:931–50.

    Article  CAS  PubMed  Google Scholar 

  100. Park KS, Wells JM, Zorn AM, Wert SE, Laubach VE, Fernandez LG, Whitsett JA. Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am J Respir Cell Mol Biol. 2006;34:151–7.

    Article  CAS  PubMed  Google Scholar 

  101. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell. 2003;4:181–9.

    Article  CAS  PubMed  Google Scholar 

  102. Calbo J, Meuwissen R, van Montfort E, van Tellingen O, Berns A. Genotype-phenotype relationships in a mouse model for human small-cell lung cancer. Cold Spring Harb Symp Quant Biol. 2005;70:225–32.

    Article  CAS  PubMed  Google Scholar 

  103. Gazdar AF, Savage TK, Johnson JE, Berns A, Sage J, Linnoila RI, MacPherson D, McFadden DG, Farago A, Jacks T, Travis WD, Brambilla E. The comparative pathology of genetically engineered mouse models for neuroendocrine carcinomas of the lung. J Thorac Oncol. 2015;10:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Linnoila RI, Naizhen X, Meuwissen R, Berns A, DeMayo FJ. Mouse lung neuroendocrine carcinomas: distinct morphologies, same transcription factors. Exp Lung Res. 2005;31:37–55.

    Article  CAS  PubMed  Google Scholar 

  105. Kwon MC, Proost N, Song JY, Sutherland KD, Zevenhoven J, Berns A. Paracrine signaling between tumor subclones of mouse SCLC: a critical role of ETS transcription factor Pea3 in facilitating metastasis. Genes Dev. 2015;29:1587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schaffer BE, Park KS, Yiu G, Conklin JF, Lin C, Burkhart DL, Karnezis AN, Sweet-Cordero EA, Sage J. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res. 2010;70:3877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15:73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160:1246–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li CM, Chen G, Dayton TL, Kim-Kiselak C, Hoersch S, Whittaker CA, Bronson RT, Beer DG, Winslow MM, Jacks T. Differential Tks5 isoform expression contributes to metastatic invasion of lung adenocarcinoma. Genes Dev. 2013;27:1557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Calbo J, van Montfort E, Proost N, van Drunen E, Beverloo HB, Meuwissen R, Berns A. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell. 2011;19:244–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popper, H. (2017). Experimental Lung Tumors. In: Pathology of Lung Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50491-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50491-8_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50489-5

  • Online ISBN: 978-3-662-50491-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics