Skip to main content

Digitale Menschmodelle

  • Chapter
  • First Online:

Zusammenfassung

Digitale Menschmodelle zur rechnergestützten, dreidimensionalen Produkt- und Arbeitsplatzgestaltung sind wichtige Werkzeuge und wesentlicher Teil dieses Buches. Ausführlich werden daher deren wesentliche Vertreter, die Charakteristik der Modelle sowie alle verfügbaren Funktionen erläutert. Anhand von Beispielen werden zudem die Gestaltung von Produkten und von Arbeitsplätzen mittels digitaler Menschmodelle vorgestellt. Ein Katalog aller arbeitswissenschaftlicher und arbeitswissenschaftlich nutzbarer digitalen Menschmodelle zeigt Vertreter mit deren Eigenschaften und Funktionalitäten.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Mühlstedt J (2012) Entwicklung eines Modells dynamisch-muskulärer Arbeitsbeanspruchungen auf Basis digitaler Menschmodelle. Dissertation an der Fakultät für Maschinenbau der Technischen Universität Chemnitz, Institut für Betriebswissenschaften und Fabriksysteme, Professur Arbeitswissenschaft, Chemnitz. Universitätsverlag der Technischen Universität Chemnitz. Chemnitz

    Google Scholar 

  2. Human Solutions (2005) RAMSIS – Bewegung beginnt im Inneren. Das intelligente Menschmodell für die Fahrzeugindustrie. Werbebroschüre. Human Solutions GmbH, Kaiserslautern

    Google Scholar 

  3. 3Dconnexion (2014) Produkte. http://www.3dconnexion.de/. Zugegriffen: 01. August 2014

  4. Seidl A (1994) Das Menschmodell RAMSIS. Analyse, Synthese und Simulation dreidimensionaler Körperhaltungen des Menschen. Dissertation, Lehrstuhl für Ergonomie, TU München

    Google Scholar 

  5. Bubb H, Fritzsche F (2009) A Scientific Perspective of Digital Human Models: Past, Present, and Future. In: Duffy VG (Hrsg) Handbook of Digital Human Modeling. Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Taylor & Francis Group, Boca Raton (FL/USA), S. 3-1–3-30

    Google Scholar 

  6. LaFiandra M (2009) Methods, Models, and Technology for Lifting Biomechanics. In: Duffy V G (Hrsg) Handbook of Digital Human Modeling. Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Taylor & Francis Group, Boca Raton (FL/USA), S. 8–1 – 8–18. ISBN 978-0-8058-5646-0, ISBN 0-8058-5646-3.

    Google Scholar 

  7. Li Z (2008) Digital Human Modeling Packages: DHM Software, Santos. In: Duffy VG (Hrsg) Handbook of Digital Human Modeling. Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Taylor & Francis Group, Boca Raton, London, New York, S. 54–15

    Google Scholar 

  8. Duffy, Vincent G. (2008): Handbook of Digital Human Modeling. Research for Applied Ergonomics and Human Factors Engineering. Boca Raton (FL/USA): CRC Press, Taylor & Francis Group. ISBN 978-0-8058-5646-0, ISBN 0-8058-5646-3.

    Book  Google Scholar 

  9. VDI 4499–4 (2012) Digitale Fabrik – Ergonomische Abbildung des Menschen in der Digitalen Fabrik. VDI Verein Deutscher Ingenieure e. V. Beuth Verlag, Berlin

    Google Scholar 

  10. Schaefers DH, Molenbroek JFM, Ruiter IA, Song Y (2012) The development of a designer-oriented digital human model: A case study. International Journal of Human Factors Modelling and Simulation 3(2):224–246. TUDelft

    Google Scholar 

  11. Schaefers DH, Ruiter IA., Song Y, Molenbroek JFM (2011) Requirements for an industrial designer-oriented DHM. In: Proceedings of DHM 2011, First International Symposium on Digital Human Modeling, S. 1–8. TU Delft

    Google Scholar 

  12. University of Michigan (2009) 3D Static Strength Prediction Program. Version 6.0.2. User’s Manual. The University of Michigan, Center for Er-gonomics. Ann Arbor, Michigan. www.engin.umich.edu/dept/ioe/3DSSPP/download.html. Zugegriffen: 20. September 2009

  13. Chaffin DB (1997) Development of Computerized Human Static Strength Simulation Model for Job Design. Human Factors and Ergonomics in Manufacturing 7 (4):305–322

    Article  Google Scholar 

  14. Feyen R, Liu Y, Chaffin D, Jimmerson G, Joseph B (1999) New Software Tools. Simulations combining CAD and human modeling software prove as effective as on-site ergonomics asessment in this auto assembly task analysis. Ergonomics in Design, April 1999, Human Factors and Ergonomics Society. S. 24–30

    Google Scholar 

  15. Feyen R, Liu Y, Chaffin D, Jimmerson G, Joseph B (2000) Computer-aided ergonomics: a case study of incorporating ergonomics analyses into workplace design. Applied Ergonomics 31:291–300. Elsevier Science Ltd.

    Google Scholar 

  16. Chaffin DB, Woolley CB (2001) Simulation of simultaneous muscle strength and balance constraints during one and two handed lifting. Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting 2001. S. 1007–1010

    Google Scholar 

  17. Russell S, Winnemuller L, Camp J, Johnson P (2004) Comparing Results of four lifting analysis tools. Proceedings of the Human Factors and Ergonomics Society 48th Annual Meeting. S. 1368–1372

    Google Scholar 

  18. Russell SJ, Winnemuller L, Camp JE, Johnson PW (2007) Comparing the results of fiive lifting analysis tools. Applied Ergonomics 38:91–97. Elsevier Ltd.

    Google Scholar 

  19. Mohr EG (2009) Proper body mechanics from an engineering perspective. Journal of Bodywork & Movement Therapies, 2009, S. 1–13. Elsevier Ltd.

    Google Scholar 

  20. Cahill HE, Davids RC (1984) ADAM – A Computer Aid to Maintainability Design. Annual Reliability and Maintainability Symposium, San Francisco, CA/USA; 24.-26. Jan. 1984., S. 12–16

    Google Scholar 

  21. Beagley Nick (1997) Human Body Modeling as Human Factors Engineering Tool. The Capability of Virtual Reality to Meet Military Requirements. RTO HFM Workshop. RTO MP-54. Orlando, USA

    Google Scholar 

  22. Playter R (1998) Human Dynamics Modeling: The Digital Biomechanics Lab. Boston Dynamics, Inc., Cambridge, Massachusetts, US

    Google Scholar 

  23. Patton JL (1993) Forward Dynamic Modeling of Human Locomotion. Master Thesis, Department of Material Science and Mechanics, Michigan State University.S. 25–41

    Google Scholar 

  24. Leino SP, Viitaniemi J, Aromaa S, Helin K (2002) Dynamics Simulation and Comfort Analysis of Human-Vehicle Systems. VTT Industrial Systems Review

    Google Scholar 

  25. Keppler V (2003) Biomechanische Modellbildung zur Simulation zweier Mensch-Maschine-Schnittstellen. Dissertation, Fakultät für Mathematik und Physik, Eberhard-Karls-Universität zu Tübingen

    Google Scholar 

  26. Molenbroek JFM (2010) 3D Anthropometry. www.tnw.tudelft.nl/live/pagina.jsp?id=26f14795-3517-4d54-9a88-02ceb221368d&lang=en. Zugegriffen: 08. Februar 2010

  27. Ruiter IA (2002) Teaching the use of an anthropometric man-model. Delft University of Technology, School of Industrial Design Engineering

    Google Scholar 

  28. Medland AJ, Matthews J (2009) The implementation of a direct search approach for the resolution of a complex and changing rule-based problems. Engineering with computers. Springer-Verlag, London

    Google Scholar 

  29. Peijs S, Broek JJ, Hoekstra PN (1998) Rapid prototyping in foam of 3D anthropometric computer models in functional postures. In: Hanson MA (Hrsg) Contemporary Ergonomics 1998. Proceedings of the Annual Conference of the Ergonomics Society. Taylor&Francis, The Ergonomics Society

    Google Scholar 

  30. Hoekstra PN (1996) „What’s up?“ Some aspects of quantifying an anthropometric model’s field-of-view in computer aided anthropometric assessment. International Journal of Industrial Ergonomics 17:,315-321. Elsevier Science B.V.

    Google Scholar 

  31. Hanson L, Akselsson R, Andreoni G, Rigotti C, Palm R, Wienholt W, Costa M, Lundin A, Rizzuto F, Gaia E, Engström T, Sperling L, Sundin A, Wolfer B (1999) Annie, a Tool for Integrating Ergonomics in the Design of Car Interiors. In: Proceedings of the 1999 SAE Southern Automotive Manufacturing Conference, Birmingham, Alabama, USA, 28.-30. September 1999, Society of Automotive Engineers, Inc.

    Google Scholar 

  32. Hanson L (2000) Computerized Tools for Human Simulation and Ergonomic Evaluation of Car Interiors. In: Proceedings of the IEA 2000/HFES 2000 Congress (XIVth Triennial Congress of the International Er-gonomics Association and 44th Annual Meeting of the Human Factors and Ergonomics Association), 29.7.-4.8.2000, San Diego, California, USA., S. 836–839

    Google Scholar 

  33. Winkler T, Michalik D (2004) Rechnersimulation von Montagebedingungen in begrenzten Räumen. GfA-Frühjahrskongress 2004. Arbeit + Gesundheit in effizienten Arbeitssystemen. GfA Press, Dortmund

    Google Scholar 

  34. Bauch A (2001) Ergonomie in der Flugzeugkabine. Passagierprozesse und manuelle Arbeitsabläufe. DGLR Bericht.

    Google Scholar 

  35. Rößler A, Lippmann R (1999) Virtuelle Menschmodelle in der Produktentwicklung. Spektrum der Wissenschaft, 09

    Google Scholar 

  36. Lippmann R (1993) Rechnergestützte Ergonomie-Methoden für den Praktiker – Teil 1. REFA Nachrichten, Sonderdruck aus Heft 3 + 4:3–12, Zeitschrift des REFA – Verband für Arbeitsstudien und Betriebsorganisation e. V., Darmstadt

    Google Scholar 

  37. Lippmann R (1996) Anthropos goes Ergomas. In: DELTA Industrie Informatik GmbH: 4. Ergomas Anwender-Forum. Ergonomische Gestaltung und Optimierung manueller Arbeitssysteme. 16. September 1996, Stuttgart

    Google Scholar 

  38. Roßgoderer U (2002) System zur effizienten Layout- und Prozessplanung von hybriden Montageanlagen. Dissertation, Lehrstuhl für Montagesystemtechnik und Betriebswissenschaften, TU München

    Google Scholar 

  39. Deisinger J, Breining R, Rößler A, (2000) ERGONAUT: A Tool for Ergonomic Analyses in Virtual Environments. 6th Eurographics Workshop on Virtual Environments

    Google Scholar 

  40. Seidl A (2000) The ergonomic tool anthropos in virtual reality–requirements, methods and realisation. Proceedings of the IEA 2000/HFES 2000 Congress

    Google Scholar 

  41. Lippmann R (1988) Arbeitsgestaltung mit CAD und ANYBODY. Sonderdruck aus REFA-Nachrichten 2/April 1988. REFA-Verband für Arbeitsstudien und Betriebsorganisation e.V. Darmstadt

    Google Scholar 

  42. IST – Inter-Somacad-Team (1994) ANYBODY Vers. 1.0. Leistungsmerkmale, Zusatzleistungen, Preisliste. IST, Gernsheim

    Google Scholar 

  43. Jung M, Damsgard M, Andersen MS, Rasmussen J (2013) Integrating Biomechanical Manikins into a CAD Environment. 2nd International Digital Human Modeling Symposium. Ann Arbor, Michigan, USA

    Google Scholar 

  44. Wagner DW, Reed MP, Rasmussen J (2007) Assessing the Importance of Motion Dynamics for Ergonomic Analysis of Manual Materials Handling Tasks using the AnyBody Modeling System. Digital Human Modeling for Design and Engineering Conference and Exhibition, Seattle, Washington, June 12–14, 2007. Society of Automotive Engineers, Inc

    Google Scholar 

  45. Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M (2006) Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice and Theory 14:1100–1111. Elsevier B.V.

    Google Scholar 

  46. Rasmussen J, Damsgaard M, Surma E, Christensen ST, de Zee M, Vondrak V (2003) AnyBody – a software system for ergonomic optimization. Fifth World Congress on Structural and Multidisciplinary Optimization, May 19–23, 2003, Lido di Jesolo–Venice, Italy

    Google Scholar 

  47. Rasmussen J, Vondrak V, Damsgaard M, de Zee M, Christensen ST, Dostal Z (2002) The AnyBody Project – Computer Analysis of the Human Body. Biomechanics of Man 2002, S. 270–274. The Czech Society of Biomechanics, Cejkovice, Czech Republic, November 13-15th, 2002

    Google Scholar 

  48. Jung M, Cho H, Roh T, Lee K (2009) Integrated Framework for Vehicle Interior Design Using Digital Human Model. Journal of Computer Science and Technology 24(6):1149–1161

    Article  Google Scholar 

  49. Majid NAbA, Abdullah MFE, Jamaludin MS, Notomi M, Rasmussen J (2013) Musculoskeletal analysis of driving fatigue: The influence of seat adjustments. Advanced Engineering Forum 10:373–378. Trans Tech Publications, Switzerland. doi: 10.4028/www.scientific.net/AEF.10.373

    Google Scholar 

  50. Rausch J, Siebertz K, Christensen ST, Rasmussen J (2006) Simulation des menschlichen Bewegungsapparates zur Innenraumgestaltung von Fahrzeugen. VDI-Berichte 1967, Teil 2, S. 1027–1048

    Google Scholar 

  51. Bossomaier T, Bruzzone A, Cimino A, Francesco L, Mirabelli G (2010) Scientific approaches for the industrial work-stations ergonomic design: a review. In: Bargiela A, Ali SA, Crowley D, Kerckhoffs EJH (Hrsg) Proceedings 24th European Conference on Modelling and Simulation (ECMS)

    Google Scholar 

  52. Patron C, Baudisch T (2000) iVip – Virtuelle Produktentste-hung. Newsletter, 2000 Nr. 1, S. 7–8. Institut für Werkzeugmaschinen und Betriebswissenschaften, Prof. Dr.-Ing. Gunther Reinhart, Technische Universität München

    Google Scholar 

  53. Lämkull D, Hanson L, Örtengren R (2009) A comparative study of digital human modelling simulation results and their outcomes in reality: A case study within manual assembly of automobiles. International Journal of Industrial Ergonomics. 39:,428-441. Elsevier B.V.

    Google Scholar 

  54. Bennis F, Chablat D, Dépincé P (2005) Virtual reality: A human centered tool for improving Manufacturing. Proceedings of Virtual Concept 2005, Biarritz, France

    Google Scholar 

  55. Chan DSK (2003) Simulation modelling in virtual manufacturing analysis for integrated product and process design. Assembly Automation 23(1):69–74. MCB UP Limited

    Google Scholar 

  56. Santos J, Sarriegi JM, Serrano N, Torres JM (2007) Using ergonomic software in non-repetitive manufacturing processes: A case study. International Journal of Industrial Ergonomics 37:267–275. Elsevier B.V.

    Google Scholar 

  57. Zäh M, Lindemann U, Lüth T (2007) Qualitätsmanagement – Qualität im Produktlebenszyklus. Vorlesung, TU München

    Google Scholar 

  58. Kühn W (2006) Digitale Fabrik. Fabriksimulation für Produktionsplaner. Carl Hanser Verlag, München, Wien

    Book  Google Scholar 

  59. Kuliński M, Michalski R (2010) Manekiny 3D w AutoCADzie. Apolinex. Laboratorium Ergonomii, Politechnika Wroclawska. www.ergonomia.ioz.pwr.wroc.pl/programy--apolinex-opis.php. Zugegriffen: 25. August 2010

  60. Hasegawa M, Chin T, Oki S, Kanai S, Shimatani K, Shimada T (2010) Effects of methods of descending stairs forwards versus backwards on knee joint force in patients with osteoarthritis of the knee: a clinical controlled study. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology. 2(14):1–7. BioMed Central Ltd.

    Google Scholar 

  61. Miaki H, Tachino K (2007) Validity of muscle force estimation utilizing musculoskeletal model. J. Phys. Ther. Sci.19:261–266

    Article  Google Scholar 

  62. Chaffin DB (2001) Digital human modeling for vehicle and workplace design. Society of Automotive Engineers, Inc., Warrendale, PA (USA), S. 7–8

    Google Scholar 

  63. Delleman NJ, Haslegrave CM, Chaffin DB (2004) Working postures and movements: tools for evaluation and engineering. CRC Press

    Google Scholar 

  64. Graham TB, Hebermehl J (2001) An Integrated Human Modeling Process for the International Space Station, Intra-Vehicular Activity. The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC)

    Google Scholar 

  65. Punte PAJ (2000) Computer-assisted ergonomic analysis for vehicle interior design. Proceedings of the IEA 2000/HFES 2000 Congress, Proceedings 3–Transportation, S. 345–348

    Google Scholar 

  66. Oudenhuijzen AJK (1998) Ergonomic and Anthropometric issues of the forward Apache crew station. In: RTO HFM Symposium on “Current Aeromedical Issues in Rotary Wing Operations”, San Diego, USA, 19.-21.10.1998. RTO MP-19

    Google Scholar 

  67. Frisch GD, D’Aulerio LA (1980) Bioman – An Improved Occupant-Crew Station Compliance Modeling System. Aviation, Space, and Environmental Medicine 02:160–167. Washington, Aerospace Medical Association, D.C. (USA)

    Google Scholar 

  68. Underwood RC, Hilby DL, Holzhauser TB, Tedlund BE (1991) The Development of the Boeing Human Model. Proceedings of the Human Factors Society 35th Annual Meeting, S. 127–131

    Google Scholar 

  69. Ryan PW (1970) Mathematical Modeling and Graphical Display of Human Movement. In: Chubb GP, Apter JT, Graessley WW, Schrenk LP, Wolf JJ, Siegel AI, Ryan PW (Hrsg) The Use of Computers for Man–machine Modeling: Status and Plans. Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Ohio, USA, S. 50–70

    Google Scholar 

  70. Kroemer KHE, Snook SH, Meadows SK, Deutsch S (1988) Ergonomic Models of Anthropometry, Human Biomechanics, and Operator-Equipment Interfaces. Proceedings of a Workshop. Prepared for Office of Naval Research, Arlington, VA. National Academy Press. Washiongton, D.C.

    Google Scholar 

  71. Dooley M (1982) Anthropometric Modeling Programs – A Survey. IEEE Computer Graphics and Applications 2(9):17–25

    Article  Google Scholar 

  72. Seitz T (2003) Videobasierte Messung menschlicher Bewegungen konform zum Menschmodell RAMSIS. Dissertation, Lehrstuhl für Ergonomie, Technische Universität München

    Google Scholar 

  73. Chaffin DB (2007) Human Motion Simulation for Vehicle and Workplace Design. Human Factors and Ergonomics in Manufacturing 17(5):475–484 Wiley Periodicals, Inc./Wiley InterScience

    Google Scholar 

  74. Dangelmaier M (2014) Multi-CAD-Menschmodell für den Einsatz in inhomogenen IT-Welten. GfA-Herbstkonferenz, 15./16.9.2014, GfA Gesellschaft für Arbeitswissenschaft e.V., Stuttgart

    Google Scholar 

  75. Gray JA (1984) Dance in Computer Technology. A Survey of Applications and Capabilities. Interchange 15(4):15–25

    Article  Google Scholar 

  76. Badler NI, Korein JD, Korein JU, Radack GM, Brotman LS (1985) Positioning and animating human figures in a task-oriented environment. The Visual Computer 1985/1:212–220

    Google Scholar 

  77. Magnenat-Thalmann N, Thalmann D (2004) Handbook of Virtual Humans. John Wiley & Sons Ltd., Chichester (England)

    Google Scholar 

  78. Porter JM, Freer M, Case K, Bonney MC (1990) Computer Aided Ergonomics and workspace design. In: Wilson JR, Corlett EN (Hrsg) Evaluation of Human Work.. Taylor & Francis, London, S. 574–619

    Google Scholar 

  79. Gärtner KP (1992) Computer-based anthropometric models in workplace design. Proceedings of the Human Factors and Ergonomics Society Eu-rope Chapter Annual Meeting in Antwerp, Belgium, November 1992, S. 17–25

    Google Scholar 

  80. Iavecchia HP, Harris RM (1986) The crewstation Assessment of reach model: status and future development plans. Proceeding s of the Human Factors Society – 30th Annual Meeting, S. 647–651

    Google Scholar 

  81. Harris R, Bennett J, Stokes J (1982) Validating CAR: A comparison study of experimentally-derived and computer-generated reach envelopes. Proceedings of the Human Factors Society – 26th An-nual Meeting, S. 969–973

    Google Scholar 

  82. Zülch Gert (2009) Perspektiven der Menschmodellierung als Werkzeug der digitalen Fabrikplanung. In: Schenk M (Hrsg) Tagungsunterlagen zum 22. HAB-Forschungsseminar der Hochschulgruppe für Arbeits- und Betriebsorganisation zu dem Thema Digital Engineering. 09.-10. Oktober 2009, Magdeburg

    Google Scholar 

  83. Zülch Gert, Waldhier T (1992) Integrated computer aided planning fo manual assembly systems. In: Mattila M, Karwowski W (Hrsg) Computer applications in ergonomics, occupational safety and health. Elsevier Science Publishers B.V.

    Google Scholar 

  84. Tom IE, Navasiolava NA (2002) Two-Level Behavior Contro of Virtual Humans. RTO HFM Symposium on “The Role of Humans in Intelligent and Automated Systems”, Warsaw (PL), 7.-9.10.2002, RTO-MP-088

    Google Scholar 

  85. Tom IE (2000) Computer Mannequin as the Basis for Automation of Transportation. Ergonomic Design and Testing Proceedings „Modeling and Information Technology of Design“, Minsk, Institute of Engineering Cybernetics NAS Belarus, 2000, S. 124–133

    Google Scholar 

  86. Blanchonette P (2006) Jack Human Modelling Tool: A Review. Ergo-nomics Australia 21(2):6–13

    Google Scholar 

  87. Chaffin DB, Evans S (1986) Computerized biomechanical models in manual work design. Proceedings of the Human Factors Society – 30th Annual Meeting. S. 96–100

    Google Scholar 

  88. Case K (1975) An Anthropometric and Biomechanical Computer Model of Man. Thesis submitted for the degree of Doctor of Philosophy. Department of Production Engineering and Production Management, Nottingham University

    Google Scholar 

  89. Krause HE, Kroemer KHE (1973) CombiMan–A computer model of the operator at his workstation. Human Factors and Ergonomics Society Annual Meeting Proceedings 17(3):418–419

    Google Scholar 

  90. PTC Parametric Technology Corporation (2010) How to proactively incorporate human factors into your product designs. White Paper, PTC

    Google Scholar 

  91. PTC Parametric Technology Corporation (2012) Pro/ENGINEER Manikin Extension. Datenblatt

    Google Scholar 

  92. PTC Parametric Technology Corporation (2014) Creo Manikin Extension. http://PTC.com/product/creo. Zugegriffen: 01. August 2014

  93. Chaffin DB (2009) Some Requirements and Fundamental Issues in Digital Human Modeling. In: Duffy VG (Hrsg) Handbook of Digital Human Modeling. Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Taylor & Francis Group, Boca Raton (FL/USA), S. 3-1–3-30

    Google Scholar 

  94. Hudson JA., Oudenhuijzen A, Zehner GF (2000) Digital human modelling systems: a procedure for verification and validation using the F-16 crew station

    Google Scholar 

  95. Rix J, Stork A (2005) Combining ergonomic and field-of-view analysis using virtual humans. Fraunhofer Institute for Computer Gra-phics, Darmstadt, 2005

    Google Scholar 

  96. Waterman D, Washburn CT.(1978) CYBERMAN–A Human Factors Design Tool

    Google Scholar 

  97. Gavrila DM, Davis LS (1996) 3-D model based tracking of humans in action: a multi-view approach. Proceedings: IEEE Computer Vision and Pattern Recognition, San Francisco

    Google Scholar 

  98. Delmia (2001) DPE – Delmia Process Engineer Handbuch. Allgemeines. Arbeitsstellen. Ergo Check. Delmia GmbH, Fellbach

    Google Scholar 

  99. Endo Y, Tada M, Mochimaru M (2014) Dhaiba: Development of Virtual Ergonomic Assessment System with Human Models. Digital Human Modeling Conference, 2014

    Google Scholar 

  100. Endo Y, Kanai S, Miyata N, Kouchi M, Mochimaru MKJ, Ogasawara M, Shimokawa Marie (2008) Optimization-Based Grasp Posture Generation Method of Digital Hand for Virtual Ergonomics Assessment. SAE Int. J. Passeng. Cars–Electron. Electr. Syst. 1 (1):590–598. SAE International

    Google Scholar 

  101. Endo Y, Kanai S, Kishinami T, Miyata N, Kouchi M, Mochimaru M (2007) Virtual Ergonomic Assessment on Handheld Products based on Virtual Grasping by Digital Hand. 2007 Digital Human Modeling Conference, Juni 2007, Seattle, WA, USA. SAE International

    Google Scholar 

  102. VT MÄK (2014) Humans. Human characters that intelligently interact with your training simulation. http://www.mak.com/products/humans.html. Zugegriffen: 01. August 2014

  103. Boston Dynamics (2010) DI Guy. Human Simulation Software. www.bostondynamics.com/bd_diguy.html. Zugegriffen: 07. Januar 2010

  104. Blank B, Broadbent A, Crane A, Pasterank G (2009) Defeating the authoring bottleneck: techniques for quickly and efficiciently populating simulated environments. Image 2009 Conference. St-Louis, Missouri (USA)

    Google Scholar 

  105. Terzopoulos D (2003) Perceptive Agents and Systems in Virtual Reality. VRST 03–Virtual Reality Software and Technology, 01.-03. Oktober, ACM, Osaka, Japan. New York

    Google Scholar 

  106. Terzopoulos D (2009) Artificial Life and Biomechanical Simulation of Humans. Digital Human Symposium, 12.3.2009

    Google Scholar 

  107. Rabie TF, Terzopoulos D (2000) Active Perception in Virtual Humans. Vision Interface 2000

    Google Scholar 

  108. Raibert M (1998) VR Surgical Simulators and Virtual Humans. ICAT’98–International Conference on Artificial Reality and Telexistence, S. 15–20

    Google Scholar 

  109. Boston Dynamics (2003) DigitalBiomechanics. Physics-based virtual prototyping software

    Google Scholar 

  110. IfM – Institut für Mechatronik e. V. (2014) alaska/DYNAMICUS. http://www.tu-chemnitz.de/ifm/produkte-html/alaskaDYNAMICUS.html. Zugegriffen: 01. August 2014

  111. Härtel T, Keil A, Hoffmeyer A, Toledo-Munoz B (2011) Capturing and Assessment of Human Motion during Manual Assembly Operation. First International Symposium on Digital Human Modeling, Conference Proceedings, June 14–16 2011, Lyon, France

    Google Scholar 

  112. IfM – Institut für Mechatronik e. V., insys GmbH – Ingenieurdienstleistung und Software (2010) alaska/DYNAMICUS Software. Biomechanisches Menschmodell für die Bewegungsanalyse. Flyer, IfM und insys

    Google Scholar 

  113. Keil A, Härtel T, Toledo Munoz B, Busche C, Hoffmeyer A (2010) Berücksichtigung der zeitlichen Komponente bei einer Ergonomiesimulation. In: Mensch- und prozessorientierte Arbeitsgestaltung im Fahrzeugbau. Tagungsband zur Herbstkonferenz 2010 der GfA., GfA-Press, Dortmund, S. 105–121

    Google Scholar 

  114. Härtel T, Knoll K, Maißer P (2006) Simulative Untersuchungen zu effektiven Drehtechniken im Eiskunstlaufen. BISp-Jahrbuch Forschungsförderung 2005/2006, S. 135–140

    Google Scholar 

  115. Härtel T, Hermsdorf H (2006) Biomechanical Modelling and Simulation of Human Body by means of DYNAMICUS. Journal of Biomechanics 39, Supplement 1, Abstracts of the 5th World Congress of Biomechanics, S. 549, Elsevier

    Google Scholar 

  116. Illmann B, Fritzsche L, Leidholdt W, Bauer S, Dietrich M (2013) Application and Future Developments of EMA in Digital Production Planning and Ergonomics. In: Duffy VG (Hrsg)DHM/HCII 2013, Part II, LNCS 8026, 2013.Springer-Verlag, Berlin, Heidelberg, S. 66–75

    Google Scholar 

  117. Fritzsche L, Jendrusch R, Leidholdt W, Bauer S, Jäckel T, Pirger A (2011) Introducing ema (Editor for Manual Work Activities) – A New Tool for Enhancing Accuracy and Efficiency of Human Simulations in Digital Production Planning. In: V.G. Duffy (Hrsg.): Digital Human Modeling, HCII 2011, LNCS 6777, Springer, Berlin, Heidelberg S. 272–281

    Google Scholar 

  118. Leidholdt W, Jendrusch R, Fritzsche L (2011) Der Humanmotorik auf der Spur – Algorithmische Bewegungsgenerierung Digitaler Menschmodelle. In: Gesellschaft für Arbeitswissenschaft (Hrsg) Mensch, Technik, Organisation–Vernetzung im Produktentstehungs- und -herstellungsprozess, 57. Kongress der Gesellschaft für Arbeitswissenschaft, GfA-Press, Dortmund, S. 607–610

    Google Scholar 

  119. Leidholdt W, Fischer H, Mühlstedt J (2010) Simulation der menschlichen Arbeit. In: Müller E, Spanner-Ulmer B (Hrsg) 4. Symposium Wissenschaft und Praxis & 8. Fachtagung Vernetzt planen und produzieren (VPP2010). Wissenschaftliche Schriftenreihe des Instituts für Betriebswissenschaften und Fabriksyste-me, Chemnitz, S. 71–83

    Google Scholar 

  120. Leidholdt W (2009) Der “Editor menschlicher Arbeit–EMA”–ein Planungsinstrument für manuelle Arbeit. 2. Symposium Produktionstechnik innovativ und interdisziplinär. WHZ – Westsächsische Hochschule Zwickau, 1.-2.04.2009

    Google Scholar 

  121. Laurig Wo, Hecktor K, Jäger M (1994) Entwicklung eines Expertensystems zur ergonomischen Analyse und Gestaltung von Tätigkeiten des manuellen Lastentransports: ErgonEXPERT. Dokumentation Arbeitswissenschaft. Verlag Dr. Otto Schmidt, Köln

    Google Scholar 

  122. Hunter SL, Thomas RE, Dischinger C, Babai M (2003) Colossal Tooling Design: 3D Simulation for Ergonomic Analysis. Ergonomics in Design Journal 3(1):121–135

    Google Scholar 

  123. Calton TL (1999) A framework for Geometric Reasoning about Human Figures and Factors in Assembly Processes. 3rd International Conference on Engineering Design and Automation, Vancouver, British Columbia (CA, USA), 01.08.199904.08.1999

    Google Scholar 

  124. Donald DL (1998) A Tutorial on Ergonomic and Process Modeling using QUEST and IGRIP. In: Medeiros DJ, Watson EF, Carson JS, Manivannan MS (Hrsg) Proceedings of the 1998 Winter Simulation Conference, S. 297–302

    Google Scholar 

  125. Nayar Narinder (1995a) Deneb/ERGO – A Simulation Based Human Factors Tool. In: Alexopoulus C, Kang K, Lilegdon WR, Goldsman D (Hrsg) Proceedings of the 1995 Winter Simulation Conference, S. 427–431

    Google Scholar 

  126. Nayar N (1995b) State of the Art and Current Activities in Human Modeling Technologie. In: Proceedings of the Human Factors and Ergonomics Society 39th Annual Meeting, S. 516–518

    Google Scholar 

  127. Nayar Narinder (1996) Workplace Ergonomics and Simulation. Assembly Automation 1:25–28

    Google Scholar 

  128. Vickers DS, Davis KR, Breazeal NL, Watson RA (1995) Radiation Dose Modeling Using IGRIP and Deneb/ERGO. Deneb Robotics User Group Conference and Exhibition

    Google Scholar 

  129. Tom, Igor E. (2001). High-Level Control of Virtual Human’s Behaviour. Proceedings of ICNNAI - International Conference on Neural Networks and Artificial Intelligence.

    Google Scholar 

  130. Université de Paris V René Descartes (2005) Ergoman. www.biomedicale.univ-paris5.fr/LAA/eergoman.htm. Zugegriffen: 18. April 2011

  131. Fulder T, Pitzmoht P, Polajnar A., Leber M (2005) Ergonomically designed workstation based on simulation of worker’s movements. Internationsl Journal Simulation Modelling 4(1):27–34

    Article  Google Scholar 

  132. Alexander D (2004) Computers in Engineering. Aerospace Engineer-ing, April 2004, S. 31–32

    Google Scholar 

  133. Hanson L, Wienholt W, Sperling L (2003) A control handling comfort model based on fuzzy logics. International Journal of Industrial Ergonomcis 31:87–100. Elsevier Science B. V

    Google Scholar 

  134. Coffey L, Fitzpatrick DP (2000) AMT Ireland–workplace ergonomics. University College Dublin. www.irishscientist.ie/2000/contents.asp?contentxml=211bs.xml&contentxsl=insight3.xsl/ www.ucd.ie/~amt. Zugegriffen 18. April 2011

  135. Mollard R, Ledunois S, Ignazi G, Coblentz A (1992) Researches and developments on postures and movements using C.A.D. techniques and ERGODATA. In: Mattila M, Karwowski W (Hrsg) Computer applications in ergonomics, occupational safety and health. Elsevier Science Publishers B.V., S. 337–343

    Google Scholar 

  136. Laitila L (2005) Datormanikinprogram som verktyg vid arbetsplatsut-formning–En kritisk studie av programanvändning. Licentiate Thesis

    Google Scholar 

  137. Stevenson MG, Coleman N, Long AF, Williamson AM (2000) Assessement, redesign and evaluation of changes to the driver’s cab in a suburban electric train. Applied Ergonomics 31:499–506 Elsevier Science Ltd.

    Google Scholar 

  138. Launis M, Lehtelä J (1992) ergoSHAPE – a design oriented ergonomic tool for AutoCAD. In: Mattila M, Karwowski W (Hrsg) Computer applications in ergonomics, occupational safety and health. Elsevier Science Publishers B.V., S. 121–128

    Google Scholar 

  139. Magnenat-Thalmann, Nadia; Thalmann, Daniel. (2008). Innovations in Virtual Humans. In: Magnenat-Thalmann, N.; Ichalkaranje, N.; Jain, L.: New Advances in Virtual Humans. Artificial Intelligence Environment. Berlin, Heidelberg: Springer. ISBN 978-3-540-79867-5.

    Chapter  Google Scholar 

  140. Fetter WA (1982) A Progression of Human Figures Simulated by Computer Graphics. IEEE Computer Graphics and Applications, S. 9–13

    Google Scholar 

  141. Schaub K (1988) Entwicklung eines modularen, rechnergestützten, dreidimensionalen man models mit interaktiver Anpassung an die Arbeitsgestaltungsaufgabe. Schriftenreihe Fortschrittsbericht Nr. 51, VDI-Reihe 17: Biotechnik. VDI-Verlag, Düsseldorf

    Google Scholar 

  142. McGuire N, Madley S, Sevrence S, Kostrzewa J, Bilk J, Gourd D, Thyagarajan R (2002) GENPAD – Ergonomic Packaging. SAE 2002 World Congress, Detroit, Michigan, 4.-7.3.2002. SAE Technical Paper Series, 2002-01-1241

    Google Scholar 

  143. Bullinger HJ, Kay L, Menges R (1988) Gribs – an approach to a realis-tic realtime simulation of human arm motion. Proceedings of the First International Conference on Ergonomics of Hybrid Automated Systems I. Elsevier Science Publishers B. V., Amsterdam

    Google Scholar 

  144. Sengupta A, Das B (1997) Human: An Autocad based three dimensional anthropometric human model for workstation design. International Journal of Industrial Ergonomics 19:345–352. Elsevier Science B. V.

    Google Scholar 

  145. Abidi MH, El-Tamimi AM, Al-Ahmari AM, Darwish SM, Rasheed MS (2013) Virtual Ergonomic Assessment of First Saudi Arabian Designed Car in a Semi-Immersive Environment. International Conference On Design and Manufacturing IConDM, Procedia Engineering 64:622–631. Elsevier Ltd.

    Google Scholar 

  146. Fritzsche L (2010) Ergonomics Risk Assessment with Digital Human Models in Car Assembly: Simulation versus Real Life. Human Factors and Ergonomics in Manufacturing & Service Industries 20(4):287–299. Wiley Periodicals, Inc.

    Google Scholar 

  147. Fireman J, Lesinski N (2009) Virtual Ergonomics: Taking Human Factors into Account for Improved Product and Process. White Paper. Dassault Systèmes Delmia Corp.

    Google Scholar 

  148. Jovanovic V, Tomovic MM, Cosic I, Miller C, Ostojic G (2007) Ergonomic Design of Manual Assembly Workplaces. Annual ASEE IL/IN Section Conference. Paper #75

    Google Scholar 

  149. Zander M (2007) Ergonomic Analysis and Evaluation of Workplaces with DELMIA V5 Human at Volkswagen. DELMIA European Customer Conference 2007, Stuttgart, 16.-17. October

    Google Scholar 

  150. Wang N, Kozak K, Wan J, Gomez-Levi G, Strumolo G (2012) Enhancing Vehicle Ingress/Egress Ergonomics with Digital Human Models. SAE-China and FISITA (eds.), Proceedings of the FISITA 2012 World Automotive Congress, Lecture Notes in Electrical Engineering 195. Springer-Verlag, Berlin, Heidelberg, doi: 10.1007/978-3-642-33835-9_65

    Google Scholar 

  151. Hanson L, Högberg D (2010) Use of anthropometric measures and digital human modelling tools for product and workplace design

    Google Scholar 

  152. Green RF, Hudson JA (2010) A Method for Positioning Digital Human Models in Airplane Passenger Seats. AHFE International – 3rd International Conference on Applied Human Factors and Ergonomics jointly with 1st International Conference on Applied Digital Human Modeling. 17–20 July 2010, Miami, Florida, USA

    Google Scholar 

  153. Wang W, Sun YC, Kong FF (2008) Analysis and Study of Ergonomics on Virtual Maintenance of Civil Airplane Based on DELMIA. Advanvced Materials Research 44–46:821–828, Trans Tech Publications

    Google Scholar 

  154. Liverani A, Amati G, Caligiana G (2004) Ergonomic Validation through Interactive Mixed Reality Support. In: Callaos N, Kim TH, Jingchao C, Fung WK, Naddeo A (Hrsg)Proceedings. 8th World Mulit-Conference on Systemics, Cybernetics and Informatics. Orlando, Florida, USA

    Google Scholar 

  155. Vieten MM. (2004) Virtual Biomechanics and its Physics. Habilitationsschrift, Universität Konstanz

    Google Scholar 

  156. Dahari M, Yeo SE, Cho WK, Sabri MAM, Mingo MZ, Ong WY (2010) Design and Development of Aircraft Cabin for Very Light Jet (VLJ). APIEM – 11th Asia Pacific Industrial Engineering and Management Systems Conference & 14th Asia Pacific Regional Meeting of International Foundation for Production Research

    Google Scholar 

  157. IC.IDO (2008) IDO:Ergonomics. ICIDO GmbH, Stuttgart. www.icido.de/PDF/ICIDO_Ergonomics_12_2008.pdf. Zugegriffen: 20. Juni 2011

  158. Kamusella Christiane (2008) Untersuchung ergonomischer Problemstellungen mit dem virtuellen Menschmodell der Firma ICIDO. Technische Universität Dresden

    Google Scholar 

  159. Hanson L, Högberg D Söderholm M (2012) Digital test assembly of truck parts with the IMMA-tool–an illustrative case. Work 41 (2012), S. 2248–2252. IOS Press and the authors

    Google Scholar 

  160. Hanson L, Högberg D, Bohlin R, Carlson JS (2011) IMMA – Intelligently Moving Manikin – Project Status. In: Salvendy G, Karwowski W (Hrsg) Advances in Applied Digital Human Modeling. CRC Press, Boca Raton (USA), S. 559–567

    Google Scholar 

  161. Högberg D (2011) IMMA–Intelligently Moving Manikins. www.his.se/english/research/virtual-system/research-groups/user-centred-product-development-research-group/research-in-product-design-engineering/vec/research-projects/imma/. Zugegriffen: 11. Juli 2011

  162. Svensson E, Bertilsson E, Högberg Dan (2010) Anthropometrics and Ergonomics Assessment in the IMMA Manikin. In: Proceedings of the 3rd Applied Human Factors and Ergonomics (AHFE) International Conference.–AHFE.

    Google Scholar 

  163. Jeong S, Wegner DM, Noh S (2010) Validation of an Ontology-based Approach for Enhancing Human Simulation in General Assembly Environments. Proceedings of the World Congress on Engineering 2010 Vol III, WCE 2010, June 30–July 2, 2010, London, U.K.

    Google Scholar 

  164. Reed MP (2009) Modeling Ascending and Descending Stairs Using the Human Motion Simulation Framework. 2009-01-2282. SAE International

    Google Scholar 

  165. Bubb, Heiner (2008). Digitale Menschmodelle. In: Landau, Kurt (2008). ASUprotect – Das Magazin für Arbeitsschutzmanagement. 2/2008, S. 29-31. Stuttgart: Gentner Verlag, ergonomia Verlag.

    Google Scholar 

  166. Mühlstedt J, Kaußler H, Spanner-Ulmer B (2008) Programme in Menschengestalt: Digitale Menschmodelle für CAx- und PLM-Systeme. Zeitschrift für Arbeitswissenschaft 2:79–86. Ergonomia Verlag, Stuttgart

    Google Scholar 

  167. Faraway J, Reed MP (2007) Statistics for Digital Human Motion Modeling in Ergonomics. Technometrics 49(3):277–290

    Article  MathSciNet  Google Scholar 

  168. Naumann A, Roetting M (2007) Digital Human Modeling for Design and Evaluation of Human-Machine Systems. MMI-Interaktiv 12, April 2007

    Google Scholar 

  169. Caputo F, Di Gironimo G, Marzano A (2006) Ergonomic Optimization of a Manufacturing System Work Cell in a Virtual Environment. Acta Poly-technica 46(5):21–27. Czech Technical University Publishing House

    Google Scholar 

  170. Gaonkar R, Madhavan V, Zhao W (2006) Virtual environment for assembly operations with improved grasp interaction. Proceedings of the 10th IJIE

    Google Scholar 

  171. Rider KA, Chaffin DB, Martin BJ (2006) Development of Active Human Response Model to Ride Motion. Proceedings of the 2006 SAE Digital Human Modeling Conference. Lyon, France

    Google Scholar 

  172. Zhao W, Madhavan V (2006) Virtual Assembly Operations with Grasp and Verbal Interaction. VRCIA (ACM International Conference on Virtual Reality Continuum and Its Applications) 2006, 14–17 June 2006, Association for Computing Machinery, Inc. (ACM), Hong Kong, S. 245–254

    Google Scholar 

  173. Raschke U (2004) The Jack Human Simulation Tool. In: Delleman NJ, Haslegrave CM, Chaffin DB (Hrsg) Working postures and movements: tools for evaluation and engineering. CRC Press, S. 431–437

    Google Scholar 

  174. Burnette C, Schaaf W (1998) Issues in using Jack Human figure modeling software to assess human-vehicle interaction in a driving simulator. Transportation Research Record: Journal of the Transportation Research Board1631/1998(77):1–7

    Google Scholar 

  175. Karwowski W, Salvendy G (1998) Ergonomics in manufacturing: raising productivity through workplace improvement. Society of Manufacturing Engineers (SME), Engineering & Management Press (EMP)

    Google Scholar 

  176. Phillips CB, Badler NI. (1988) Jack: A Toolkit for Manipulating Articulated Figures. ACM/SIGGRAPH Symposium on User Interface Software, Canada

    Google Scholar 

  177. Karmakar S, Pal MS, Majumdar D, Majumdar D (2012) Application of digital human modeling and simulation for vision analysis of pilots in a jet aircraft: a case study. Work 41 (2012), S. Karmakar et al. Application of Digital Human Modeling, S. 3412–3418. IOS Press and the authors

    Google Scholar 

  178. Paul G, Lee LWC (2011) Interfacing Jack And Anybody: Towards Anthropometric Musculoskeletal Digital Human Modeling. 1st International Symposium on Digital Human Modelling, 14–16 June 2011, Université Claude Bernard, Lyon

    Google Scholar 

  179. Ruiter IA (2011) Using the digital human model ‚Jack®‘ in education. First International Symposium on Digital Human Modeling (DHM 2011), Lyon, France

    Google Scholar 

  180. Hicks JS, Durbin DB, Kozycki RW (2010) An Overview of Human Figure Modeling for Army Aviation Systems. Technical Report ARL-TR-5154, Human Research and Engineering Directorate, Army Research Laboratory, Aberdeen Proving Ground, MI (USA)

    Google Scholar 

  181. Reed M P, Huang S (2008) Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework. Proceedings of SAE Digital Human Modeling Conference. 2008-01-1896. Pittsburgh, PN, USA

    Google Scholar 

  182. Tsimhoni O, Reed MP, The Virtual Driver (2007) Integrating Task Planning and Cognitive Simulation with Human Movement Models. 2007 World Congress, Detroit, Michigan, April 16–19, 2007. Society of Automotive Engineers, Inc.

    Google Scholar 

  183. Lockett JF, Kozycki R, Gordon CC, Bellandi E (2005) An Integrated Human Figure Modeling Analysis Approach for the Army’s Future Combat Systems. SAE 2005 World Congress, 11.-14. April 2005, Detroit, MI (USA). SAE International

    Google Scholar 

  184. Reed MP, Parkinson MB, Klinkenberger AL (2003) Assessing the Validity of Kinematically Generated Reach Envelopes for Simulations of Vehicle Operators. SAE Digital Human Modeling Conference, Technical Paper 2003-01-2216, Society of Automotive Engineers, Inc.

    Google Scholar 

  185. Gallizio M, Sembenini G (2002) Accessibility and maintainability studies through digital humans in a digital mock-up context. ICAS2002 congress, S. 883.1-883.10

    Google Scholar 

  186. Eynard E, Fubini E, Masali M, Cerrone M (2000) Generation of virtual man models representative of different body proportions and application to ergonomic design of vehicles. Proceedings of the IEA 2000/HFES 2000 Congress, Proceedings 1–Virtual Environments, S. 489–492. Human Factors and Ergonomics Society

    Google Scholar 

  187. Badler N, Erignac C, Bindinganavale R, Vincent PJ, Sanchez E, Abshire K, Wampler JL, Boyle ES, Ianni JD (2001) Technology for Maintenance. Procedure Validation. Interim Report for the Period January 2000 to January 2001. United States Air Force Research Laboratory

    Google Scholar 

  188. Jayaram U, Jayaram S, Shaikh I, Kim YJ, Palmer C (2006) Introducing quantitative analysis methods into virtual environments for real-time and continuous ergonomic evaluations. Computers in Industry 57:283–296. Elsevier B.V.

    Google Scholar 

  189. Shaikh I, Jayaram U, Jayaram S, Palmer C (2004) Participatory Ergonomics Using VR Integrated with Analysis Tools. In: Ingalls RG, Rossetti MD, Smith JS, Peters BA(Hrsg) Proceedings of the 36th Winter Simulation Conference 2004. IEEE Computer Society Washington, DC. (USA), S. 1746–1754

    Google Scholar 

  190. Fuller HJA, Reed MP, Liu Y (2012) Integration of Physical and Cognitive Human Models to Simulate Driving With a Secondary In-Vehicle Task. IEEE Transactions on Intelligent Transportation System 13(2). IEEE.

    Google Scholar 

  191. Liu Y (2003) Interactive reach planning for animated characters using hardware acceleration. Dissertation. University of Pennsylvania

    Google Scholar 

  192. Magnenat-Thalmann Nadia, Thalmann D (2005) Virtual humans: thirty years of research, what next? Visual Comput 21:997–1015. Springer-Verlag

    Google Scholar 

  193. Maurel W (1998) 3D Modeling of the Human Upper Limb Including the Biomechanics of Joints, Muscles and Soft Tissues. PhD Thesis, Ecole Polytechnique Federale de Lausanne

    Google Scholar 

  194. LifeModeler Inc. (2014) LifeMOD™ 2010.0. http://www.lifemodeler.com/. Zugegriffen: 01. August 2014

  195. Liu YS, Tsay TS, Chen CP, Pan HC (2013) Simulation of riding a full suspension bicycle for analyzing comfort and pedaling force. Procedia Engineering 60:84 – 90. Elsevier Ltd.

    Google Scholar 

  196. Serveto S, Barre S, Kobus JM, Mariot JP (2010) A three-dimensional model of the boat–oars–rower system using ADAMS and LifeMOD commercial software. Proc. ImechE 224:75–88, Part P: J. Sports Engineering and Technology

    Google Scholar 

  197. van der Vegte WF (2009) Testing virtual use with scenarios. Proefschrift, Technische Universiteit Delft

    Google Scholar 

  198. Rukuiza E, Eidukynas V (2009) Investigation of drivers poses influence to the intervertebral forces in the junction of thoracic and lumbar spinal curves. Mechanika 2(76):61–64

    Google Scholar 

  199. Schulz BW, Lee WE, Lloyd JD (2008) Estimation, Simulation, and experimentation of a fall from bed. Journal of Rehabilitation Research & Development 45(8):1227–1236

    Article  Google Scholar 

  200. Lee K (2006) CAD System for Human-Centered Design. Computer-Aided Design & Applications 3(5):615–628

    Article  Google Scholar 

  201. Mhteam (2011) MakeHuman. Open Source tool for making 3D characters. www.makehuman.org/. Zugegriffen 25. Juli 2011

  202. Hareesh PV, Kimura T, Sawada K, Thalmann D (2010) Aging Algorithm for Anthropometric Digital Humans: Quantitative Estimation for Ergonomic Applications

    Google Scholar 

  203. Hault-Dubrulle A, Robache F, Drazétic P, Morvan H (2009) Pre-crash phase analysis using a driving simulator. Influence of atypical position on injuries and airbag adaption

    Google Scholar 

  204. Yang J, Kim JH, Abdel-Malek K, Marler T, Beck S, Kopp GR (2007) A new digital human environment and assessment of vehicle interior design. Computer-Aided Design 39(7): 548–558. Elsevier

    Google Scholar 

  205. Boniol M, Verriest JP, P R, Doré JF (2007) Proportion of Skin Surface Area of Children and Young Adults from 2 to 18 Years Old. Journal of Investigative Dermatology 128:461–464

    Google Scholar 

  206. Robert T, Cheze L, Dumas R, Verriest JP (2006) Joint forces and moments calculation for a 3D whole body model during complex movement

    Google Scholar 

  207. Wang X (2006) Researches on digital human modeling for ergo-nomic simulation. INRETS. The French National Institute for Transport and Safety Research, Biomechanics and Human Modelling Laboratory (LBMH)

    Google Scholar 

  208. Slawinski JS, Billat VL (2004) Difference in Mechanical and Energy Cost between Highly, Well, and Nontrained Runners. Journal Medicine & Science in Sports & Exercise 36(8):1440–1446

    Article  Google Scholar 

  209. Slawinski JS, Billat VL (2005) Changes in Internal Mechanical Cost during Overground Running to Exhaustion. Journal Medicine & Science in Sports & Exercise 37(7):1180–1186

    Article  Google Scholar 

  210. Slawinski J, Billat V, Koralsztein JP, Tavernier M (2004) Use of lumbar point for the estimation of potential and kinetic mechanical power in running. Journal of Applied Mechanics 20:324–331

    Google Scholar 

  211. Zhang B, Álvarez-Casado E, Sandoval ST, Mondelo P (2010) Using ergonomic digital human modeling in evaluation of workplace design and prevention of occupational hazards onboard fishing vessel. Universitat Politècnica de Catalunya. Departament de Projectes d’Enginyeria

    Google Scholar 

  212. NexGen Ergonomics Inc. (2005) ManneQuinELITE Version 1.0. Bringing simplicity to Human Modeling. Produktbroschüre

    Google Scholar 

  213. Mattila M (1996) Computer-aided ergonomics and safety–A challenge for integrated ergonomics. International Journal of Industrial Ergonomics, Nr. 17/1996, S. 309–314, Elsevier Science B.V.

    Google Scholar 

  214. Hoekstra PN (1993) Some Uses of “Active Viewing” in Computer Aided Anthropometric Assessment. Proceedings of the Human Factors and Ergonomics Society 37th Annual Meeting, S. 494–498

    Google Scholar 

  215. Väyrynen S (1988) The computer as an aid in the analysis of ergo-nomic and safety features of maintenance. Description of two graphic applications. Scandinavian Journal Work Environment Health14(1): 105–107

    Google Scholar 

  216. Hampton D (2004) Optimization-based Prediction of Human Motion. DIGITAL Humans Lab., Virtual Soldier Research Program. Präsentationsfolien

    Google Scholar 

  217. Hidson D (1988) Computer-aided design and bio-engineering: a review of the literature (u). Defence Research Establishment Ottawa

    Google Scholar 

  218. Dunbar B (2010) NASA–GRAF composite images. www.nasa.gov/centers/johnson/slsd/about/divisions/hefd/laboratories/graf20.html. Zugegriffen: 22. August 2011

  219. Mansouri M, Reinbolt JA (2012) A platform for dynamic simulation and control of movement based on OpenSim and MATLAB. Journal of Biomechanics 45:1517–1521. Elsevier Ltd.

    Google Scholar 

  220. Reinbolt JA, Seth A, Delp SL (2011) Simulation of human movement: applications using OpenSim. Procedia IUTAM 2:186–198, 2011 Symposium on Human Body Dynamics. Elsevier Ltd.

    Google Scholar 

  221. Seth A, Sherman M, R JA, Delp SL (2011) OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2:212–232, 2011 Symposium on Human Body Dynamics

    Google Scholar 

  222. Ördögh L (2011) Referenzprojekte: (1981–2010). www.virtualhumanengineer-ing.com/index.php?option=com_content&view=article&id=15&Itemid=19&lang=de. Zugegriffen: 22. August 2011

  223. Lind S, Krassi B, Viitaniemi J, Kiviranta S, Heilala J, Berlin C (2008) Linking ergonomics simulation to production process development. In: Mason SJ, Hill RR, Mönch L, Rose O, Jefferson T, Fowler JW (2008) Proceedings of the 2008 Winter Simulation Conference, IEEE, S. 1968–1973

    Google Scholar 

  224. Helin K, Viitaniemi J, Aromaa S, Montonen J, Evilä T, Leino SP, Määttä T (2007) OSKU–Digital Human Model in the Participatory Design Approach. A New Tool to Improve Work Tasks and Workplaces. VTT working papers 83, VTT Technical Research Centre of Finland

    Google Scholar 

  225. Slot L, Larsen PK, Lynnerup N (2014) Photogrammetric Documentation of Regions of Interest at Autopsy – A Pilot Study. J Forensic Sci 59(1). American Academy of Forensic Sciences. Wiley. doi: 10.1111/1556-4029.12289

    Google Scholar 

  226. Park S, Tuller SE (2011) Human body area factors for radiation exchange analysis: standing and walking postures. Int J Biometeorol 55:695–709. doi: 10.1007/s00484-010-0385-2. Springer

    Article  Google Scholar 

  227. Rodriguez-Flick D (2010) Virtuelle Absicherung virtueller Fahrzeugmontagevorgänge mittels digitalem 3-D-Menschmodell – Optimierung der Mensch-Computer-Interaktion. Dissertation, Lehrstuhl für Ergonomie, Technische Universität München

    Google Scholar 

  228. Remlinger W, Bubb H (2008) Sichtanalyse mit dem Men-schmodell RAMSIS unter Berücksichtigung altersbedingter Sehschwächen. In: BGAG–Institut Arbeit und Gesundheit der Deutschen Gesetzlichen Unfallversicherung e.V. (DGUV). Tagungsband Produktdesign für alle: FÜR JUNGE = FÜR ALTE?. Dresden: BGAG. S. 119–124

    Google Scholar 

  229. Seitz T, Bubb H (2001) Human-model based movement-capturing without markers for ergonomic studies. Digital Human Modeling for Design and Engineering Conference and Exhibition, June 2001, Arlington, VA, USA. Society of Automotive Engineers, Inc.

    Google Scholar 

  230. Seidl A (1992) RAMSIS: 3-D-Menschmodell und integriertes Konzept zur Erhebung und konstruktiven Nutzung von Ergonomie-Daten. VDI-Bericht 948, VDI-Verlag, Düsseldorf, S. 297–309

    Google Scholar 

  231. Seidl A (2001) Ramsis. Automotive Engineering Partners, Ausgabe 2001–05

    Google Scholar 

  232. Geuß H (1994) Entwicklung eines anthropometrischen Meßsystems für das CAD-Menschmodell RAMSIS. PhD Thesis, München University

    Google Scholar 

  233. Weissinger J, Rosen W, Mack S, Carstens E (2013) Umsetzung des Fahrzeugkonzepts. Mercedes-Benz SL. Entwicklung und Technik. ATZ/MTZ-Typenbuch 2013, Springer, Heidelberg, Berlin, S. 48–59

    Google Scholar 

  234. Park J, Jung K, Chang J, K J, You H (2011) Evaluation of Driving Posture Prediction in Digital Human Simulation Using RAMSIS. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2011 55:1711. Sage Publications

    Google Scholar 

  235. Mohamed Z (2010) Designing Driver Space for Large Car. In: National Conference in Mechanical Engineering Research and Postgraduate Studies (2nd NCMER 2010), 3–4 December 2010, UMP Pekan, Pahang.Abdel-Malek K, Yang J, Marler T, Beck S, Mathai A, Zhou X, Patrick A, Arora J (2006) Towards a new generation of virtual humans. Int. J. Human Factors Modelling and Simulation 1(1):2–39. Inderscience Enterprises Ltd.

    Google Scholar 

  236. Conradi J, Alexander T (2008) Evaluation eines digitalen anthropometrischen Menschmodells zum Design von Konsolenarbeits-plätzen. In: Schmidt L, Schlick C, Grosche J (Hrsg) Ergonomie und Mensch-Maschine-Systeme. Springer, Berlin, Heidelberg

    Google Scholar 

  237. Johansson I, Larsson M (2007) Evaluation of the Manikin Building Function in eM-RAMSIS when Using Motion Capture. Master’s Thesis, Lueâ University of Technology

    Google Scholar 

  238. Loczi J (2000) Application of the 3-D CAD Manikin RAMSIS to Heavy Truck Design. Proceedings of the IEA 2000/HFES 2000 Congress

    Google Scholar 

  239. Visual Advantage International Limited (2010) RapidManikin R1.0. Produktbroschüre

    Google Scholar 

  240. Pappas M, Karabatsou V, Mavrikios D, Chryssolouris G (2007) Ergonomic Evaluation of Virtual Assembly Tasks. In: Cunha PF, Maropoulos PG (Hrsg) Digital enterprise technology: perspectives and future challenges. Springer.

    Google Scholar 

  241. Zhang B (2005) Using artifi cial neural networks for the transformation of human body postures based on landmarks. Proefschrift, Technische Universiteit Delft

    Google Scholar 

  242. DELMIA Corp (2000) SAFEWORK Pro. Product brochure

    Google Scholar 

  243. Jones PRM, Rioux M (1997) Three-dimensional Surface Anthropometry: Applications to the Human Body. Optics and Lasers in Engineering 28:89–117. Elsevier Science Limited

    Google Scholar 

  244. Fortin C, Gilbert R, Beuter A, Laurent F, Schiettekatte J, Carrier R, Dechamplain B (1990) SAFEWORK: A microcomputer-aided work-station design and analysis. New advances and future developments. In: Karwowski W, Genaidy AM, Asfour SS (Hrsg) Computer-Aided Ergonomics. Taylor and Francis, London

    Google Scholar 

  245. Oudenhuijzen AJK, Zehner GF, Hudson JA., Choi HJ (2010) On the Creation of 3D Libraries for F-16 Pilots in their Crew Station: Method development, Library Creation and Validation. AHFE International – 3rd International Conference on Applied Human Factors and Ergonomics jointly with 1st International Conference on Applied Digital Human Modeling. 17–20 July 2010, Miami, Florida, USA

    Google Scholar 

  246. Kingsley EC, Schofield NA, Case K (1981) SAMMIE. A Computer Aid for Man Machine Modelling. Computer Graphics 15(3):S. 163–169

    Article  Google Scholar 

  247. Case K, Porter JM, Bonney M (1986) SAMMIE. A Computer Aided Design Tool for Ergonomists. Proceedings of the Human Fac-tors Society. 30th Annual Meeting. S. 694–698

    Google Scholar 

  248. Marshall R, Summerskill S, Case K, Gyi D, Sims R (2010) Development and Evaluation of Task Based Digital Human Modeling for Inclusive Design. AHFE International – 3rd International Conference on Applied Human Factors and Ergonomics jointly with 1st International Conference on Applied Digital Human Modeling. 17–20 July 2010, Miami, Florida, USA

    Google Scholar 

  249. Summerskill S, Marshall R, Case K (2010) Potential Improvements to the Occupant Accomodation design Process in Vehicles using Digital Human Modelling. AHFE International – 3rd International Conference on Applied Human Factors and Ergonomics jointly with 1st International Conference on Applied Digital Human Modeling. 17–20 July 2010, Miami, Florida, USA

    Google Scholar 

  250. Porter JM, Marshall R, Case K, Gyi DE, Sims RE, Summerskill S (2007) Inclusive design for the mobility impaired. In: Duffy VG (Hrsg) Handbook of Digital Human Modeling: Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Boca Raton (FL, USA)

    Google Scholar 

  251. Case K, Porter M, Gyi D, Marshall R, Oliver R (2001) Virtual fitting trials in “Design for all”. Journal of Materials Processing Technology 117:255–261

    Article  Google Scholar 

  252. Tait R, Southall D (1998) Driver’s field of view from large vehicles. Phase 3: Report. Department of Environment, Transport and the Regions (DETR). Loughborough University, Loughborough.

    Google Scholar 

  253. Duffy V (2014) Advances in Applied Digital Human Modeling. AHFE conference

    Google Scholar 

  254. SantosHuman (2014) Santos Human Inc. SantosHuman, Inc. www.santoshumaninc.com. Zugegriffen: 01. August 2014

  255. Sipper J, Marler T, Bhatt R (2013) Using Human Simulation in Developing Implantable Medical Device Leads. Reliability and Maintainability Symposium (RAMS), Orlando, FL. Proceedings – Annual. IEEE

    Google Scholar 

  256. Abdel-Malek K, Arora J (2008) Physics-Based Digital Human Modeling: Predicitve Dynamics. In: Duffy VG (Hrsg) Handbook of Digital Human Modeling. Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Taylor & Francis Group. S. 5–1 – 5–33

    Google Scholar 

  257. Pitarch EP (2007) Virtual Human Hand: Grasping Strategy and Simulation. Dissertation/PhD thesis, Universitat Politecnica de Catalunya (UPC) (E)

    Google Scholar 

  258. Abdel-Malek, Karim; Yang, Jingzhou; Marler, Timothy; Beck, Steven; Mathai, Anith; Zhou, Xianlian; Patrick, Amos; Arora, Jasbir (2006). Towards a new generation of virtual humans. Int. J. Human Factors Modelling and Simulation, Vol. 1, No. 1, S. 2-39. Inderscience Enterprises Ltd.

    Article  Google Scholar 

  259. Gray, Judith, A. (1994). Dance in Computer Technology. A Survey of Applications and Capabilities. Interchange, Vol. 15, Nr. 4, S. 15-25

    Google Scholar 

  260. Bruderlin A, Calvert TW (1989) Goal-Directed, Dynamic Animation of Human Walking. Computer Graphics 23(3). ACM Association for Computer MachineryBubb H (2008) Digitale Menschmodelle. In: Landau K (Hrsg) ASUprotect – Das Magazin für Arbeitsschutzmanagement 2(2008):29–31. Gentner Verlag, ergonomia Verlag. Stuttgart

    Google Scholar 

  261. MusculoGraphics (2013) SIMM 7.0 for Windows® User Guide. MusculoGraphics, a division of Motion Analysis Corp, Santa Rosa, CA (USA)

    Google Scholar 

  262. Delp SL, Loan JP (2000) A computational framework for simulat-ing and analyzing human and animal movement. Computing in Medicine, Computing in Science & Engineering, September/October 2000, S. 46–55. IEEE Computer Society

    Google Scholar 

  263. Thalmann D (1995) Autonomy and Task-Level Control for Virtual Actors. Programming and Computer Software 21(4):202–211

    Google Scholar 

  264. Webber BL, Phillips CB, Badler NI (1993) Simulating Humans: Computer Graphics, Animation, and Control. Oxford University Press

    Google Scholar 

  265. Zeltzer D (1982) Representation of complex animated figures. National Research Council of Canada, Proc. Graphics Interface, S. 205–211

    Google Scholar 

  266. Kamusella C (1989) Tommy – ein Konzept zur 3D Simulation des menschlichen Körpers. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, R. Med. 38

    Google Scholar 

  267. Chaffin DB (1969) A computerized biomechanical model – Development of and use in studying cross body actions. Journal of Biomechanics 2(4):429–441

    Article  Google Scholar 

  268. Shaikh I (2003) Integrating ergonomic analysis functionality with an immersive environment. Master Thesis. Washington State University, USA

    Google Scholar 

  269. Chryssolouris G, Mavrikios D, Fragos D, Karabatsou V (2000) A virtual reality-based experimentation environment for the verification of human-related factors in assembly processes. Robotics and Computer Integrated Manufacturing 16:267–276. Elsevier Science Ltd.

    Google Scholar 

  270. Chao EYS, Lim J (2013) Virtual Interactive Musculoskeletal System (VIMS) in orthopaedic translational research. Journal of Orthopaedic Translation 1:25–40. Elsevier (Singapore) Pte Ltd.

    Google Scholar 

  271. Chao EYS, Armiger RS, Yoshida H, Lim J, Haraguchi N, (2007) Virtual interactive musculoskeletal system (VIMS) in orthopaedic research, education and clinical patient care. Journal of Orthopaedic Surgery and Research 2007 2:2. BioMed Central Ltd.

    Google Scholar 

  272. Lewis M (2000) Evolving Human Figure Geometry. Technical Report OSU-ACCAD-5/00-TR1. ACCAD (Advanced Computing Center for the Arts and Design), Ohio State University

    Google Scholar 

  273. 3D Human Model (2014) 3D Human Model. Anthropometric Validation Tool. http://www.3dhumanmodel.com/. Zugegriffen: 01. August 2014

  274. AnyBody (2014) AnyBody Technology A/S. http://www.anybodytech.com/. Zugegriffen: 01. August2014

  275. Rice SM (2002) Boeing Human Modeling System. Boeing. www.boeing.com/assocproducts/hms/. Zugegriffen: 03. August 2009

  276. CADHUMAN (2011) CADHUMAN. High Quality 3D Human Cad Models. www.cadhuman.com/index.html. Zugegriffen: 30. Mai 2011

  277. Schlick C, Bruder R, Luczak H (2010) Arbeitswissenschaft. Springer, Heidelberg

    Google Scholar 

  278. Schneck M, Schliessburg J (2013) Digitale Menschmodellierung und Absicherung manueller Montagetätigkeiten spannungsführender Bauteile. Symposium Digital Humans in Applications, Leipzig,. 12./13.11.2013. AMZ Sachsen

    Google Scholar 

  279. Dassault Systemes (2004) Human Builder 2 (HBR). CATIA V5R18 Product synthesis

    Google Scholar 

  280. Nexgen Ergonomics (2014) HumanCAD. www.nexgenergo.com/ergonomics/humancad_prods.html. Zugegriffen: 01. August 2014

  281. ESI (2014) Applications. Face up to your industrial challenges with IC.IDO. ESI Group. http://www.esi-group.com/software-services/virtual-reality/icido/applications, Zugegriffen: 01. August 2014

  282. Carlson JS (2014) The Sum of Ergonomics and Mathematics adds up to better Health. Fraunhofer-Chalmers Centre, Göteborg. http://www.fcc.chalmers.se/geo/projects/the-sum-of-ergonomics-and-mathematics-adds-up-to-better-health/. Zugegriffen: 01. August 2014

  283. Siemens PLM Software (2009) Classic Jack. Fact sheet. Siemens Product Lifecycle Management Software Inc., www.siemens.com/tecnomatix. Zugegriffen: 10. Mai 2009

  284. Siemens PLM Software (2008) NX Human Modeling and Posture Prediction. Siemens Product Lifecycle Management Software Inc., www.siemens.com/plm. Zugegriffen: 20. Oktober 2008

  285. Osaka Gas Company, Siemens PLM Software (2007) Designing for comfort and safety. Case Study. Osaka Gas Company Limited, Siemens Product Lifecycle Management Software Inc.. www.siemens.com/plm. Zugegriffen: 30. Juni 2010

  286. MakeHuman (2014) MakeHuman. Open Source tool for making 3D characters. www.makehuman.org/. Zugegriffen: 01. August 2014

  287. Human Solutions (2014) Bild Datenbank. Human Solutions Group, Kaiserslautern.http://www.human-solutions.com/group/front_content.php?idcat=540. Zugegriffen: 01. August 2014

  288. Yang J, Marler T, Kim HJ, Farrell K, Mathai A, Beck S, Abdel-Malek K, Arora A, Nebel K (2005) SantosTM: A New Generation of Virtual Humans. 2005 SAE World Congress, Detroit, Michigan

    Google Scholar 

  289. MusculoGraphics (2014) MusculoGraphics, Inc., a division of Motion Analysis Corporation. http://www.musculographics.com/. Zugegriffen: 01. August 2014

  290. Mitsch, Stefan; Sachs, Marcus; Gras, Marcus. (2008). Solid Edge Modelle. solide-dge.cad.de/galerie/modelle_se/modelle_se.html. Zugegriffen: 11. Juli 2011

    Google Scholar 

  291. Bliss C (2011) Parts. www.cbliss.com/inventor/Parts.htm. Zugegriffen: 11. Juli 2011

  292. Archvision (2014) ArchVision RPC Content. ArchVision, Inc, Lexington, Kentucky (USA). https://www.archvision.com/. Zugegriffen: 01. August 2014

  293. Kinga AI, Chou CC (1976) Mathematical modelling, simulation and experimental testing of biomechanical system crash response. Journal of Biomechanics 9(5):301–317. Pergamon Press

    Google Scholar 

  294. Baughman LD (1983) Development of an Interactive Computer Program to Produce Body Description Data. Technical Review and Ap-proval. AF Aerospace Medical Research Laboratory

    Google Scholar 

  295. Wölfel HP, Rützel S, Hofmann J (2002) CASIMIR und MEMOSIK: Biodynamische Modelle des Menschen. Anwendung ingenieurwissenschaftlicher Methoden auf das biologische System Mensch. Bionik: biologisch-technische Systeme, TU Darmstadt, Verl. für Marketing und Kommunikation, Monsheim, S. 48–54

    Google Scholar 

  296. Wang JT (2014) Phase II Plan and Status of the Global Human Body Models Consortium. Brochure. Government & Industry Meeting, Jan. 22 – 24, 2014, Washington, DC

    Google Scholar 

  297. Vezzin P, Verriest JP (2005) Development of a Set of Numerical Human Models for Safety. France: INRETS, Biomechanics and Human Modeling Laboratory

    Google Scholar 

  298. Wikipedia (2010) Hybrid III.: www.en.wikipedia.org/wiki/Hybrid_III. Zugegriffen: 11. Juli 2011

  299. tass-safe (2010) MADYMO product suite. www.tass-safe.com/en/products/madymo. Zugegriffen: 11. Juli 2011

  300. Beillas P (2014) Position and Personalize Advanced Human Body Models for Injury Prediction. Projekt Brochure

    Google Scholar 

  301. Toyota Motor Sales (2011) Toyota Ideas for Good–T.H.U.M.S. www.toyota.com/ideas-for-good/technologies/THUMS.html. Zugegriffen: 11. Juli 2011

  302. Goodwill (2011) Anatronica. Interactive Anatomy 3D. Goodwill Enterprise Development. Harbour City. www.anatronica.com. Zugegriffen: 01. August 2014

  303. Biodigital (2014) The Biodigital Human. A Better Way to Understand Health and the Human Body. BioDigital, Inc., New York (USA). https://www.biodigital.com/. Zugegriffen: 01. August 2014

  304. Doyle A (1999) Deadmanwalking: innovative simulation technology breathes life into digital human models. Computer Graphics World 22(12):41–44

    Google Scholar 

  305. Xu TC, Chao BA (2000) VIP-Man: An image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle monte carlo calculations. Health Phys. 78(5):476–486. Health Physics Society

    Google Scholar 

  306. Hanavan EP (1964) A Mathematical Model of the Human Body. AMRL. Technical Report, Wright-Patterson Air Force Base, OH/USA, S. 64–102

    Google Scholar 

  307. Boyle E, Rooks E (1994) Task simulation using human figure models. NAECON 94 – National Aerospace and Electronics Conference, S. 765–770

    Google Scholar 

  308. Aume NM, Topmiller DA (1972) Human Engineering Computer Aided Desing (HECAD). Human Factors and Ergonomics Society (HFES) Annual Meeting Proceedings 16(2):315–317

    Google Scholar 

  309. Harris RM, Iavecchia HP, Ross LV, Shaffer SC (1987) Microcomputer Human Operator Simulator (HOS-IV). Proceedings of the Human Factors Society (HFES) 31st Annual Meeting, S. 1179–1183

    Google Scholar 

  310. Boulic R, Capin T, Huang Z, Molet T, Shen J, Thalmann D, Kalra P, Magnenat-Thalmann N, Moccozet L, Pandzic I, Lintermann B, Saar K, Schmitt A (1998) The HUMANOID Environment for Interactive Ani-mation of Multiple Deformable Human Characters. Proceedings of Eurographics ’95

    Google Scholar 

  311. Roerdink JBTM, van Delden MJB, Hin AJS (1997) A Prototype System for Real Time Computer Animation of Slow Traffic in a Driving Simulator. WSCG 97: The Fifth International Conference in Central Europe on Computer Graphics and Visualization ’97

    Google Scholar 

  312. Deutsche MTM-Vereinigung e.V. (2011) MTMergonomics. www.dmtm.com/forschung/projekte/akt_projekte_mtmergo.php. Zugegriffen: 11. Juli 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Mühlstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Mühlstedt, J. (2016). Digitale Menschmodelle. In: Bullinger-Hoffmann, A., Mühlstedt, J. (eds) Homo Sapiens Digitalis - Virtuelle Ergonomie und digitale Menschmodelle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50459-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50459-8_4

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50458-1

  • Online ISBN: 978-3-662-50459-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics