Skip to main content

Bewegung und Diabetes mellitus

  • Chapter
  • 24k Accesses

Zusammenfassung

Unter dem Begriff Diabetes werden chronische Stoffwechselerkrankungen zusammengefasst, deren Leitbefund die chronische Hyperglykämie ist. Je nach Diabetestyp ist die Ursache eine unzureichende Insulinsekretion, die unzureichende Insulinwirksamkeit oder eine Kombination aus beiden Störungen. Weltweit leben derzeit aktuellen Schätzungen zufolge fast 400 Millionen Erwachsene mit Diabetes. Die Mehrheit der Diabetespatienten leidet an einem Typ-2-Diabetes. Steigende Patientenzahlen in Kombination mit einer hohen individuellen Krankheitsbelastung im Sinne von makro- und mikrovaskulären Komplikationen ergeben die hohe Relevanz dieser Erkrankung. Neben der Pathophysiologie und den Einflussfaktoren auf die Entstehung eines Typ-2-Diabetes wird in diesem Kapitel die Rolle der körperlichen Bewegung für Prävention und Therapie des Diabetes beleuchtet und eine Übersicht über Empfehlungen zu Umfang und Intensität körperlicher Aktivität bei Diabetes mellitus Typ 2 gegeben. Diabetesspezifische Besonderheiten wie die Vermeidung von Hypoglykämien oder körperliche Aktivität bei verschiedenen Folgeerkrankungen werden dabei berücksichtigt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Ackermann RT, Sandy LG, Beauregard T, Coblitz M, Norton KL, Vojta D (2014) A randomized comparative effectiveness trial of using cable television to deliver diabetes prevention programming. Obesity (Silver Spring) 22:1601-7

    Google Scholar 

  • Aljasem LI, Peyrot M, Wissow L, Rubin RR (2001) The impact of barriers and self-efficacy on self-care behaviors in type 2 diabetes. The Diabetes Educator 27(3): 393-404

    Google Scholar 

  • American Diabetes Association (2013) Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36: 1033-1046

    Google Scholar 

  • Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S (2007) The correlation between adiposity and adiponectin, tumor necrosis factor-α, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest 30: 210 –214

    Google Scholar 

  • Bajpeyi S, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Hickner RC et al. (2009) Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. Journal of applied physiology 106(4): 1079-1085

    Google Scholar 

  • Balducci S, Iacobellis G, Parisi L, Di Biase N, Calandriello E, Leonetti F, Fallucca F (2006) Exercise training can modify the natural history of diabetic peripheral neuropathy. Journal of diabetes and its complications 20(4): 216-223

    Google Scholar 

  • Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL (2015) Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task Force. Annals of internal medicine 163(6): 437-451

    Google Scholar 

  • Basaran Y, Taslipinar A, Bolu SE, Saracli MA, Turker T et al. (2014) Comparison of Gut Microbiota in Obese, Diabetic and Healthy Control Individuals. Endocrine Society’s 96th Annual Meeting and Expo, June 21–24, 2014, Presentation LB-PP02

    Google Scholar 

  • Bellamy L, Casas JP, Hingorani AD, Williams D (2009) Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. The Lancet 373(9677): 1773-1779

    Google Scholar 

  • Bravata DM, Smith-Spangler C, Sundaram V et al. (2007) Using pedometers to increase physical activity and improve health: a systematic review. JAMA 298: 2296–2304

    Google Scholar 

  • Brazeau AS, Rabasa-Lhoret R, Strychar I, Mircescu H (2008) Barriers to physical activity among patients with type 1 diabetes. Diabetes care 31(11): 2108-2109

    Google Scholar 

  • Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) (2013) Nationale VersorgungsLeitlinie Therapie des Typ-2-Diabetes – Kurzfassung, 1. Auflage. Version 4. 2013, zuletzt geändert: November 2014. www.dm-therapie.versorgungsleitlinien.de. DOI: 10.6101/AZQ/000215

  • Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut microbes 3(4): 279-288

    Google Scholar 

  • Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P (2012) What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia 55(3): 542-551

    Google Scholar 

  • Chudyk A, Petrella RJ (2011) Effects of Exercise on Cardiovascular Risk Factors in Type 2 Diabetes A meta-analysis. Diabetes Care 34(5): 1228-1237

    Google Scholar 

  • Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ et al. (2010) Exercise and type 2 diabetes. The American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes care 33(12): 2692-2696

    Google Scholar 

  • Diabetes Prevention Program Research Group (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine 346(6): 393-403

    Google Scholar 

  • Dijk JW van, Manders RJF, Tummers K, Bonomi AG, Stehouwer CDA, Hartgens F, van Loon LJC (2012) Both resistance-and endurance-type exercise reduce the prevalence of hyperglycaemia in individuals with impaired glucose tolerance and in insulin-treated and non-insulin-treated type 2 diabetic patients. Diabetologia 55(5): 1273-1282

    Google Scholar 

  • Dijk JW van, van Loon LJ (2015) Exercise Strategies to Optimize Glycemic Control in Type 2 Diabetes: A Continuing Glucose Monitoring Perspective. Diabetes Spectrum, 28(1): 24-31

    Google Scholar 

  • Dijk JW van, Venema, M, van Mechelen, W, Stehouwer, CD, Hartgens, F, van Loon, LJ (2013) Effect of moderate-intensity exercise versus activities of daily living on 24-hour blood glucose homeostasis in male patients with type 2 diabetes. Diabetes care, 36(11): 3448-3453

    Google Scholar 

  • Dixit S, Maiya AG, Shastry BA (2014) Effect of aerobic exercise on peripheral nerve functions of population with diabetic peripheral neuropathy in type 2 diabetes: a single blind, parallel group randomized controlled trial. Journal of diabetes and its complications 28(3): 332-339

    Google Scholar 

  • Dohm GL (2002) Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise. Journal of Applied Physiology 93(2): 782-787

    Google Scholar 

  • Dunning BE, Gerich JE (2007) The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 28: 253-83

    Google Scholar 

  • Dutton GR, Tan F, Provost BC, Sorenson JL, Allen B, Smith D (2009) Relationship between self-efficacy and physical activity among patients with typ 2 diabetes. J Behav Med 32(3): 270-7

    Google Scholar 

  • Earnest CP, Lupo M, Thibodaux J, Hollier C, Butitta B et al. (2013) Interval training in men at risk for insulin resistance. Int J Sports Med 34(4): 355-63

    Google Scholar 

  • Emerging Risk Factors Collaboration, Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ et al. (2011) Diabetes mellitus, fasting glucose and risk of cause-specific death. N Engl J Med 364: 829-41

    Google Scholar 

  • Esefeld K, Zimmer P, Stumvoll M, Halle M (2014) Diabetes, Sport und Bewegung. Diabetologie und Stoffwechsel 9(S 02): S196-S201

    Google Scholar 

  • Esser N, Legrand-Poels S, Piette J, Scheen AJ Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes research and clinical practice 105(2): 141-150

    Google Scholar 

  • Freibothe I, Seißler J, Lechner PDA (2014) Diabetes mellitus in der Gynäkologie. Der Gynäkologe 47(7): 527-536

    Google Scholar 

  • Gerstein HC, Santaguida P, Raina P, Morrison KM, Balion C et al. (2007) Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes research and clinical practice 78(3): 305-312

    Google Scholar 

  • Gillen JB, Little JP, Punthakee Z, Tarnopolsky MA, Riddell MC, Gibala MJ (2012) Acute high-intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes. Diabetes, Obesity and Metabolism 14(6): 575-577

    Google Scholar 

  • Goldberg RB, Temprosa MG, Mather KJ, Orchard TJ, Kitabchi AE, Watson KE (2014) Lifestyle and metformin interventions have a durable effect to lower CRP and tPA levels in the Diabetes Prevention Program except in those who develop diabetes. Diabetes care 37(8): 2253-2260

    Google Scholar 

  • Greevenbroek MM van, Schalkwijk, CG, Stehouwer, CD (2013) Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med, 71(4): 174-87

    Google Scholar 

  • Heidemann C, Du Y, Schubert I, Rathmann W, Scheidt-Nave C (2013) Prävalenz und zeitliche Entwicklung des bekannten Diabetes mellitus. Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz

    Google Scholar 

  • Heller G, Gunster C, Swart E (2005) The frequency of lower limb amputations in Germany. Dtsch Med Wochenschr 130:1689–1690

    Google Scholar 

  • Herbst A, Kordonouri O, Schwab KO, Schmidt F, Holl RW (2007) Impact of Physical Activity on Cardiovascular Risk Factors in Children With Type 1 Diabetes A multicenter study of 23,251 patients. Diabetes Care 30(8): 2098-2100

    Google Scholar 

  • Hocking S, Samocha-Bonet D, Milner KL, Greenfield JR, Chisholm DJ (2013) Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocrine reviews 34(4): 463-500

    Google Scholar 

  • Hu G, Jousilahti P, Barengo NC, Qiao Q, Lakka TA, Tuomilehto J (2005) Physical activity, cardiovascular risk factors, and mortality among Finnish adults with diabetes. Diabetes Care 28(4): 799-805

    Google Scholar 

  • Hummel PDM, Achenbach P (2015) Diabetes mellitus Typ 1. Der Internist 56(5): 475-483

    Google Scholar 

  • IDF (2015) IDF Diabetes Atlas, 6th ed. International Diabetes Federation, Brussels. www.idf.org/diabetesatlas. Zugegriffen: 31. Juli 2015

  • Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K Laakso M (2007) Retinopathy predicts cardiovascular mortality in type 2 diabetic men and women. Diabetes Care 30(2): 292-299

    Google Scholar 

  • Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. The Lancet 383(9922): 1068-1083

    Google Scholar 

  • Kaizu S, Kishimoto H, Iwase M, Fujii H, Ohkuma T et al. (2014) Impact of leisure-time physical activity on glycemic control and cardiovascular risk factors in Japanese patients with type 2 diabetes mellitus: the Fukuoka Diabetes Registry. PLoS ONE 9(6): e98768. DOI:10.1371/journal.pone.0098768

  • Kellerer M, Häring HU (2011) Epidemiologie, Ätiologie und Pathogenese des Typ-2-Diabetes. Diabetologie in Klinik und Praxis (6): 76-84

    Google Scholar 

  • Kelly KR, Navaneethan SD, Solomon TP, Haus JM, Cook M, Barkoukis H, Kirwan JP (2014) Lifestyle-induced decrease in fat mass improves adiponectin secretion in obese adults. Medicine and science in sports and exercise 46(5): 920

    Google Scholar 

  • Kemper M, Halle M (2011) »Bewegung als Medikament« in der Therapie des Typ-2-Diabetes. Der Diabetologe 7(1): 15-20

    Google Scholar 

  • Ketterer C, Heni M, Stingl K, Tschritter O, Linder K et al. (2014) Polymorphism rs3123554 in CNR2 reveals gender-specific effects on body weight and affects loss of body weight and cerebral insulin action. Obesity 22(3): 925-931

    Google Scholar 

  • Kleinwechter H, Schäfer-Graf PDU (2012) Gestationsdiabetes. Der Diabetologe 8(8): 631-631

    Google Scholar 

  • Kleinwechter H, Schäfer-Graf U, Bührer C, Hoesli I, Kainer F et al. (2011) Gestationsdiabetes mellitus (GDM). Evidenzbasierte Leitlinie zu Diagnostik, Therapie u. Nachsorge der Deutschen Diabetes-Gesellschaft (DDG) und der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG). www.deutsche-diabetes-gesellschaft.de. Zugegriffen: 09. November 2015

  • Kluding PM, Pasnoor M, Singh R, Jernigan S, Farmer K et al. (2012) The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. Journal of Diabetes and its Complications 26(5): 424-429

    Google Scholar 

  • Koivusalo SB, Rönö K, Klemetti MM, Roine RP, Lindström J et al. (2015) Gestational Diabetes Mellitus Can Be Prevented by Lifestyle Intervention: The Finnish Gestational Diabetes Prevention Study (RADIEL) A Randomized Controlled Trial. Diabetes care: dc150511

    Google Scholar 

  • Kurth BM (2012) Erste Ergebnisse aus der »Studie zur Gesundheit Erwachsener in Deutschland« (DEGS). Bundesgesundheitsblatt 55: 980–990

    Google Scholar 

  • Laaksonen DE, Atalay M, Niskanen LK, Mustonen J, Sen CK, Lakka TA, Uusitupa MI (2000) Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial. Medicine and science in sports and exercise 32(9): 1541-1548

    Google Scholar 

  • Lauritzen HP (2013) Insulin and Contraction-induced GLUT-4 Traffic in Muscle: Insights from a Novel Imaging Approach. Exercise and sport sciences reviews 41(2): 77

    Google Scholar 

  • LeMaster JW, Mueller MJ, Reiber GE, Mehr DR, Madsen RW, Conn VS (2008) Effect of weight-bearing activity on foot ulcer incidence in people with diabetic peripheral neuropathy: feet first randomized controlled trial. Physical Therapy 88(11): 1385-1398

    Google Scholar 

  • Lindström J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hemiö K, Finnish Diabetes Prevention Study Group (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. The Lancet 368(9548): 1673-1679

    Google Scholar 

  • Little JP, Percival ME, Safdar A, Tarnopolsky MA et al. (2011) Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology 111(6): 1554-1560

    Google Scholar 

  • Look AHEAD Research Group (2013) Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. The New England journal of medicine 369(2): 145-154

    Google Scholar 

  • Lorenzo C, Williams K, Hunt KJ, Haffner SM (2007) The National Cholesterol Education Program - Adult Treatment Panel III, International Diabetes Federation, and World Health Organization definitions of the metabolic syndrome as predictors of incident cardiovascular disease and diabetes. Diabetes Care 30: 8 –13

    Google Scholar 

  • Ma J, Yank V, Xiao L, Lavori PW, Wilson SR, Rosas LG et al. (2013) Translating the Diabetes Prevention Program lifestyle intervention for weight loss into primary care: a randomized trial. JAMA Intern Med 173:113-21

    Google Scholar 

  • McAuley PA, Artero EG, Sui X, Lavie CJ, Almeida MJ, Blair SN (2014) Fitness, fatness, and survival in adults with prediabetes. Diabetes care 37(2): 529-536

    Google Scholar 

  • McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. New England Journal of Medicine 363(24): 2339-2350

    Google Scholar 

  • Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. The Lancet 378(9786): 169-181

    Google Scholar 

  • OECD (2010) Diabetes-Prävalenz und -Inzidenz. Gesundheit auf einen Blick 2009: OECD-Indikatoren, OECD Publishing. http://dx.doi.org/10.1787/soc_glance-2009-14-de. Zugegriffen: 10. Oktober 2015

  • Page KA, Romero A, Buchanan TA, Xiang AH (2014) Gestational diabetes mellitus, maternal obesity, and adiposity in offspring. The Journal of pediatrics 164(4): 807-810

    Google Scholar 

  • Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type 2 diabetes. Endocrine Reviews 31(3): 364-395

    Google Scholar 

  • Ramachandran A, Snehalatha C, Ram J, Selvam S, Simon M, Nanditha A et al. (2013) Effectiveness of mobile phone messaging in prevention of type 2 diabetes by lifestyle modification in men in India: a prospective, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol 1:191-8

    Google Scholar 

  • Ramalho AC, de Lourdes Lima M, Nunes F, Cambuí Z, Barbosa C et al. (2006) The effect of resistance versus aerobic training on metabolic control in patients with type-1 diabetes mellitus. Diabetes research and clinical practice 72(3): 271-276

    Google Scholar 

  • Rathmann W, Scheidt-Nave C, Roden M, Herder C (2013) Typ-2-Diabetes: Prävalenz und Relevanz angeborener und erworbener Faktoren für die Prädiktion. Deutsches Ärzteblatt 110(19): 331-337

    Google Scholar 

  • Rathmann W, Strassburger K, Heier M, Holle R, Thorand B, Giani G, Meisinger C (2009) Incidence of Type 2 diabetes in the elderly German population and the effect of clini- cal and lifestyle risk factors. KORA S4/F4 Cohort study. Diab Med 26: 1212–1219

    Google Scholar 

  • Scherbaum WA, Haak T (Hrsg) (2008) Deutsche Diabetes-Gesellschaft (DDG). Körperliche Aktivität und Diabetes mellitus. Evidenzbasierte Leitlinie der Deutschen Diabetes-Gesellschaft. EK IV. http://www.deutsche-diabetes-gesellschaft.de/redaktion/mitteilungen/leitlinien/ EBL_Bewegung_2008.pdf. Zugegriffen: 27. April 2016

  • Schwarz PEH, Landgraf R, Hoffmann R (2013) Prävention des Typ-2-Diabetes. In: diabetesDE – Deutsche Diabetes-Hilfe (Hrsg) Deutscher Gesundheitsbericht Diabetes 2013. Kirchheim + Co, Mainz, S 17-24

    Google Scholar 

  • Seshasai SRK, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Emerging Risk Factors Collaboration (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. The New England journal of medicine 364(9): 829

    Google Scholar 

  • Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud’homme D et al. (2007) Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Annals of internal medicine 147(6): 357-369

    Google Scholar 

  • Simmons D, Jelsma JG, Galjaard S, Devlieger R, van Assche A et al. (2015) Results From a European Multicenter Randomized Trial of Physical Activity and/or Healthy Eating to Reduce the Risk of Gestational Diabetes Mellitus: The DALI Lifestyle Pilot. Diabetes care 38(9): 1650-1656

    Google Scholar 

  • Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033

    Google Scholar 

  • Sluik D, Buijsse B, Muckelbauer R, Kaaks R, Teucher B et al. (2012) Physical activity and mortality in individuals with diabetes mellitus: a prospective study and meta-analysis. Archives of internal medicine 172(17): 1285-1295

    Google Scholar 

  • Snowling NJ, Hopkins WG (2006) Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients a meta-analysis. Diabetes care 29(11): 2518-2527

    Google Scholar 

  • Stefan N, Staiger H, Wagner R, Machann J, Schick F, Häring HU, Fritsche A (2015) A high-risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia 58(12): 2877-2884

    Google Scholar 

  • Sussman JB, Kent DM, Nelson JP, Hayward RA (2015) Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of Diabetes Prevention Program. BMJ 350: h454

    Google Scholar 

  • Switzer MP, Elhanafi S, San Juan ZT (2015) Change in Daily Ambulatory Activity and Cardiovascular Events in People with Impaired Glucose Tolerance. Current cardiology reports 17(3): 1-5

    Google Scholar 

  • Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M (2012) Prediabetes: a high-risk state for diabetes development. The Lancet 379(9833): 2279-2290

    Google Scholar 

  • Terada S, Yokozeki T, Kawanaka K, Ogawa K, Higuchi M, Ezaki O, Tabata I (2001) Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol 90: 2019–2024

    Google Scholar 

  • Thangaratinam S, Rogozińska E, Jolly K, Glinkowski S, Roseboom T, Tomlinson JW, Khan KS (2012) Effects of interventions in pregnancy on maternal weight and obstetric outcomes: meta-analysis of randomised evidence. Bmj: 344

    Google Scholar 

  • Tienen FHJ van, van der Kallen CJH, Lindsey PJ, Wanders RJ, van Greevenbroek MM, Smeets HJM (2011) Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity. International Journal of Obesity, 35(9): 1154-1164

    Google Scholar 

  • Tokmakidis SP, Touvra AM, Douda HT, Smilios I, Kotsa K, Volaklis KA (2014) Training, detraining, and retraining effects on glycemic control and physical fitness in women with type 2 diabetes. Hormone and metabolic research= Hormon-und Stoffwechselforschung= Hormones et metabolisme 46(13): 974-979

    Google Scholar 

  • Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England Journal of Medicine, 344(18): 1343-1350

    Google Scholar 

  • Ucok K, Yalcinkaya H, Acay A, Coban NF, Aslanalp S et al. (2015) Do patients with newly diagnosed type 2 diabetes have impaired physical fitness, and energy expenditures? Up close and personal with low-molecular-weight heparins (LMWHs) 261: 276

    Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet 352(9131): 837-853

    Google Scholar 

  • Umpierre D, Ribeiro PA, Kramer CK, Leitão CB, Zucatti AT et al. (2011) Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. Jama 305(17): 1790-1799

    Google Scholar 

  • Vukovich MD, Arciero PJ, Kohry WM, Racette SB, Hansen PA, Holloszy JO (1996) Changes in insulin action and GLUT-4 with 6 days of inactivity in endurance runners. J Appl Physiol 80: 240–244

    Google Scholar 

  • Wang X, Bao W, Liu J, OuYang YY, Wang D et al. (2013) Inflammatory Markers and Risk of Type 2 Diabetes A systematic review and meta-analysis. Diabetes care 36(1): 166-175

    Google Scholar 

  • Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN (2000) Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Annals of internal medicine 132(8): 605-611

    Google Scholar 

  • Xiang AH, Kjos SL, Takayanagi M, Trigo E, Buchanan TA (2010) Detailed physiological characterization of the development of type 2 diabetes in Hispanic women with prior gestational diabetes mellitus. Diabetes 59(10): 2625-2630

    Google Scholar 

  • Yates T, Haffner SM, Schulte PJ, Thomas L, Huffman KM et al. (2014) Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. The Lancet 383(9922): 1059-1066

    Google Scholar 

  • Zafrir B, Khashper A, Gaspar T, Dobrecky-Mery I, Azencot M et al. (2014) Prognostic impact of abdominal fat distribution and cardiorespiratory fitness in asymptomatic type 2 diabetics. European journal of preventive cardiology 22 (9): 1146-1153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, K., Hamann, A. (2017). Bewegung und Diabetes mellitus. In: Banzer, W. (eds) Körperliche Aktivität und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50335-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50335-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50334-8

  • Online ISBN: 978-3-662-50335-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics