Physikalische Eigenschaften und Prozesse

  • Hans-Peter BlumeEmail author
  • Gerhard W. Brümmer
  • Rainer Horn
  • Ellen Kandeler
  • Ingrid Kögel-Knabner
  • Ruben Kretzschmar
  • Karl Stahr
  • Berndt-Michael Wilke


Böden sind Naturkörper und als solche durch jeweils typische physikalische Eigenschaften gekennzeichnet; Farbe (Kap. 6.8) und Körnung (Kap. 6.1) fallen am meisten ins Auge. Sie sind daher wichtige Bestandteile einer jeden Bodenbeschreibung.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Weiterführende Lehr- und Fachbücher

  1. Alonso, P. & P. Delage (1995): Unsaturated soils. Vol. 1–3, Balkema, RotterdamGoogle Scholar
  2. Bigham, J.M. & E.J. Ciolkosz (Hrsg.) (1993): Soil color. Soil Sci Soc Am Spec Publ 31. Madison, WIGoogle Scholar
  3. Blume, H.-P., P. Felix-Henningsen, W.R. Fischer, H.-G. Frede, R. HORN & K. Stahr (Hrsg.) Handbuch der Bodenkunde, Wiley – VCH, Weinheim.Google Scholar
  4. Bowman, A.F. (Ed.) (1990): Soils and the greenhouse effect. Wiley, ChichesterGoogle Scholar
  5. Brzesinski, G. & H.-J. Mögel (1993): Grenzflächen und Kolloide – Physikalisch-chemische Grundlagen. Spektrum, HeidelbergGoogle Scholar
  6. Craig, R.F. (1995): Soil Mechanics. 5.Aufl. Chapman &Hall, CambridgeGoogle Scholar
  7. Ehlers, W. (1996): Wasser in Boden und Pflanze. Ulmer, StuttgartGoogle Scholar
  8. Engelhardt, W.V. (1960): Porenraum der Sedimente. Springer, BerlinGoogle Scholar
  9. Fitzpatrick, E.A. (1993): Soil microscopy and micromorphology. Wiley, ChichesterGoogle Scholar
  10. Fredlund, D.G., & H. Rahardjo (1993): Soil mechanics for unsaturated soils. Wiley, New YorkGoogle Scholar
  11. Geiger, R. (1961): Das Klima der bodennahen Luftschicht. Vieweg, BraunschweigGoogle Scholar
  12. Glinski, J. & W. Stepniewski (1985): Soil Aeration and its Role for Plants. CRC, Boca RatonGoogle Scholar
  13. Hanks,R.J. & G.L. Ashcroft (1995): Applied Soil Physics. 2.Aufl. Springer, BerlinGoogle Scholar
  14. Hartge, K.H. & R. Horn (1999): Einführung in die Bodenphysik. 3. Aufl. Schweizerbart, StuttgartGoogle Scholar
  15. Hartge, K.H. & R. Horn (2009): Die physikalische Untersuchung von Böden. 4.Aufl. Schweizerbart, StuttgartGoogle Scholar
  16. Hillel, D. (1998): Environmental Soil Physics. Elsevier, AmsterdamGoogle Scholar
  17. Jury, W.A. & R. Horton (2004): Soil physics. ed. Wiley, New YorkGoogle Scholar
  18. Kutilek, M., & D.R. Nielsen (1994): Soil hydrology, Catena Publ., CremlingenGoogle Scholar
  19. Lal, R. (Ed.) (2002): Encyclopedia of Soil Science. Dekker, New YorkGoogle Scholar
  20. Lal, R. & M.K. Shukla (2004): Principles of Soil Physics. Dekker, New YorkGoogle Scholar
  21. Luckner, L. & V. M. Schestakow (1991): Migration processes in the soil and groundwater zone. Lewis, Chelsea, Mich., USAGoogle Scholar
  22. Mccarthy, D.F. (2007): Essentials of Soil Mechanics and Foundations. 7.Aufl. Pearson, New YorkGoogle Scholar
  23. Mitchell, A.K. & K. Soga (2005): Fundamentals of Soil Behavior, 3rd ed. Wiley, Hoboken, CanadaGoogle Scholar
  24. Olphen, H. van (1987): Dispersion and flocculation. In: Newman, A.C.D. (Hrsg.): Chemistry of Clays and Clay Minerals. Mineral Soc, Monograph 6: 203–224; Longman Scient & Techn, HarlowGoogle Scholar
  25. Parry, R.H.G. (2004): Mohr circles, stress paths and geotechnics. 2nd ed. Spon, LondonGoogle Scholar
  26. Ritsema, C.J. & L.W. Dekker (2000): Water Repellency in Soils. Elsevier, AmsterdamGoogle Scholar
  27. Schönwiese, C.-D. (2003): Klimatologie. 2. Aufl. Ulmer, StuttgartGoogle Scholar
  28. Sumner, M. (2000): Handbook of Soil Science. CRC, Boca RatonGoogle Scholar
  29. Wyszecki, G. & W.S. Stiles (1982): Color Science: Concepts and methods, quantitative data and formulae. 2nd ed. Wiley, New YorkGoogle Scholar

Weiterführende Spezialliteratur

  1. Adderley, W.P., I.A. Simpson & D.A. Davidson (2002): Colour description and quantification in mosaic images of soil thin sections. Geoderma 108: 181–195Google Scholar
  2. AG Bodenkunde der glä & BGR (2005): Bodenkundliche Kartieranleitung. 5. Aufl. Schweizerbart, StuttgartGoogle Scholar
  3. Albrecht, C., B. Huwe & R. Jahn (2004): Zuordnung des Munsell-Codes zu einem Farbnamen nach bodenkundlichen Kriterien. Z. Pflanzenern. u. Bodenkd. 167: 60–65Google Scholar
  4. Arriaga, F.J., B. Lowery & M.D. Mays (2006): A fast method for determining soil particle size distribution using a laser instrument. Soil Sci 171: 663–674Google Scholar
  5. Babel, U., P. Benecke, K.H. Hartge, R. Horn & H. Wiechmann (1995): Determination of Soil Structure at Various Scales. 1–10. In: Hartge, K.H. & R. Stewart (Ed.): Soil Structure – its Development and Function. Adv. in Soil Sci, CRC, Boca RatonGoogle Scholar
  6. Ball, B.C., A. Scott & J.P. Parker (1999): Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil & Tillage Res 53: 29–39Google Scholar
  7. Barouchas, P.E. & N.K. Moustakas (2004): Soil colour and spectral analysis employing linear regression models. I. Effect of organic matter. Int. Agrophysics 18: 1–10Google Scholar
  8. Barrett, L.R. (2002): Spectrophotometric color measurement in situ in well drained sandy soils. Geoderma 108, 49–77Google Scholar
  9. Barron, V. & J. Torrent (1986): Use of Kubelka Munk theory for study the influence of iron oxides on soil colour. J. Soil Sci. 37: 499–510Google Scholar
  10. Baumgartl, T. (2002): Prediction of tensile stresses and volume change with hydraulic models. In: Pagliai, M. & R. Jones (Hrsg.): Sustainable Land Management – Environmental Protection – a Soil Physical Approach. Advances in Geoecology 35: 507–514; Catena, ReiskirchenGoogle Scholar
  11. Berli, M. (2006): Soil Physics – Theoretical Analysis of Fluid Inclusions for In Situ Soil Stress and Deformation Measurements. Soil Sci Soc Am J 70: 1441–1452Google Scholar
  12. Boivin, P., P. Garnier & D. Tessier (2004): Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci Soc Am J 68: 1145–1153Google Scholar
  13. Boynton, B. & O.C. Compton (1944): Normal seasonal change in oxygen and carbondioxid percentages in gas from the larger pores of three orchard subsoils. Soil Sci 57: 108–117Google Scholar
  14. Chertkov, V.Y. (2005): The Shrinking Geometry Factor of a Soil layer. Soil Sci Soc Am J 69: 1671–1683Google Scholar
  15. CHO, G.-C., J. Dodds, & J.C. Santamarina (2006): Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. J. Geotech Geoenv Eng 132: 591–602Google Scholar
  16. Ciglasch, H., W. Amelung, S. Totrakool & M. Kaupenjohann (2005): Water flow patterns and pesticide fluxes in an upland soil in northern Thailand. Eur J Soil Sci 56: 765–777Google Scholar
  17. Cook, F.J. & J.H. Knight (2003): Oxygen Transport to Plant Roots: Modeling for Physical Understanding of Soil Aeration. Soil Sci Soc. Am J 67: 20–31Google Scholar
  18. Cosentino, D., C. Chenu & Y. le Bissonnais (2006): Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biol & Biochem 38: 2053–2062Google Scholar
  19. Crescimanno, G. & A. de Santis (2004): Bypass flow, salinization and sodication in a cracking clay soil. Geoderma 121: 307–321Google Scholar
  20. Deurer, M., I. Vogeler, A. Khrapitchev & D. Scotter (2002): Imaging of water flow in porous media by magnetic resonance imaging microscopy. J Environm Qual 31: 487–493Google Scholar
  21. Deutscher Normenausschuss Farbe (1980): DIN 6164. Teil I – IIGoogle Scholar
  22. Doerr, S.H., C.J. Ritsema, L.W. Dekker, D.F. Scott & D. Carter (2007): Water repellence of soils: new insights and emerging research needs. Hydrol Processes 21: 2223–2228Google Scholar
  23. Dörner, J. (2005): Anisotropie von Bodenstrukturen und Porenfunktionen in Böden und deren Auswirkungen auf Transportprozesse in gesättigtem und ungesättigtem Zustand. Schr Institut für Pflanzenernähr & Bodenk, CAU Kiel, H. 68Google Scholar
  24. Ehlers, W., K. Schmidtke & R. Rauber (2002): Änderung der Dichte und Gefügefunktion südniedersächsischer Lößböden unter Ackernutzung. Landnutzung und Landentwicklung. 44: 9–18Google Scholar
  25. Eickhorst, T. & R. Tippkötter (2008): Detection of microorganisms in undisturbed soil by combining fluorescence in situ hybridization (FISH) and micropedological methods. Soil Biol Biochem 40: 1284–1293Google Scholar
  26. Feddes, R.A., & P.A.C. Raats (2004): Parameterizing the soil-water-plant root system. In: Feddes, R.A., G.H. de Rooij, J.C. van Dam (Hrsg.): Unsaturated-zone Modeling: Progress, Challenges. Applicat. 6. Wageningen UR Fontis Series: 95–141Google Scholar
  27. Feng, G., L. WU & J. Letey (2002): Evaluating aeration criteria by simultaneous measurement of oxygen diffusion rate and soil-water regime. Soil Sci 167: 495–503Google Scholar
  28. Flessa, H., U. Wild, M. Klemisch & J. Pfadenhauer (1998): Nitrous oxide and methane fluxes from organic soils under agriculture. Eur J Soil Sci 49: 327–335Google Scholar
  29. Fox, D.M., F. Darboux & P. Carrega (2007): Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes 21: 2377–2384Google Scholar
  30. Gavilan, P., J. Berengena & R.G. Allen (2007): Measuring versus estimating net radiation and soil heat flux: Impact on Penman-Monteith reference ET estimates in semiarid regions. Agricult Water Management 89: 275–286Google Scholar
  31. Gebhardt, S. (2007): Wasserhaushalt und Funktionen der Böden im Grundwasserabsenkbereich des Wasserwerkes Wacken in Schleswig Holstein. Schriftenr Inst Pflanzenernähr & Bodenk. CAU Kiel, H. 75Google Scholar
  32. Gerke, H.H. (2006): Preferential flow description for structured soils. J Plant Nutr Soil Sci 169: 382–400Google Scholar
  33. Hallett, P.D. & T.A. Newson (2005): Describing soil crack formation using elastic-plastic fracture mechanics. Eur Jour Soil Sci 56: 31–38Google Scholar
  34. Hallett, P.D., T. Baumgartl & I.M. Young (2001): Subcritical Water Repellency of Aggregates from a Range of Soil Management Practices. Soil Sci Soc Am J 65: 184–190Google Scholar
  35. Horn, R. & T. Baumgartl (2002): Dynamic properties of soils. In: A.W. Warrick (Hrsg.): Soil Physics Companion: 389; CRC, Boca RatonGoogle Scholar
  36. Horn, R., H. Fleige, F.-H. Richter, E. A. Czyz, A. Dexter, E. Diaz-Pereira, E. Dumitru, R. Enache, K. Rajkai, D. de la Rosa & C. Simota (2005): Prediction of mechanical strength of arable soils and its effects on physical properties at various map scales. Soil and Tillage Res. 82: 47–56Google Scholar
  37. Horn, R., K.H. Hartge, J. Bachmann & M.B. Kirkham (2007): Mechanical Stresses in Soils Assessed from Bulk-Density and Penetration-Resistance Data Sets. Soil Sci Soc Am J 71: 1455–1459Google Scholar
  38. Horn, R. & A. Smucker (2005): Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil & Tillage Res. 82: 5–14Google Scholar
  39. Horton, R., K.L. Bristow, G.J. Kluitenberg & T.J. Sauer (1996): Crop residue effects on surface radiation and energy balance – Review. Theoretical & Appl Climatology 54: 27–37Google Scholar
  40. Kodesova, R., M. Kocarek, V. Kodes, J. Simunek & J. Kozak (2008): Impact of soil micromorphological features on water flow and herbicide transport in soils. Vadose Zone J 7: 798–809Google Scholar
  41. Kutilek, M. (2004): Soil hydraulic properties as related to soil structure. Soil & Tillage Res.79: 175–184Google Scholar
  42. Lado, M., M. Ben-Hur & I. Shainberg (2004): Soil wetting and texture effects on aggregate stability, seal formation, and erosion. Soil Sci Soc Am J 68:1992–1999Google Scholar
  43. Landa, E.R. & A.H. Munsell (2004): A sense of color at the interface of art and science. Soil Sci 169: 83–89Google Scholar
  44. Lin, H., J. Bouma, L.P. Wilding, J.L. Richardson, M. Kutílek & D.R. Nielsen (2005): Advances in Hydropedology. Adv Agron 85: 2–91Google Scholar
  45. Malicki, M.A., R. Plagge & C.H. Roth (1996): Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European J Soil Sci 47: 357–366Google Scholar
  46. Markgraf, W. & R. Horn (2007): Scanning Electron Microscopy – Energy Dispersive Scan Analyses and Rheological Investigations of South-Brazilian Soils. Soil Sci Soc Am J 71: 851–59Google Scholar
  47. Mcbride, M.B. & P. Baveye (2002): Diffuse double-layer models, long-range forces, and ordering in clay colloids. Soil Sci Soc Am J 66: 1207–1217Google Scholar
  48. Mchale, G., M.I. Newton & N.J. Shirtcliffe (2005): Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: a materials science view. Eur J Soil Sci 56: 445–452Google Scholar
  49. Miess, M. (1968): Vergleichende Darstellung von meteorologischen Meßergebnissen und Wärmehaushaltsuntersuchungen an drei unterschiedlichen Standorten in Norddeutschland. Diss. Thesis, Hannover.Google Scholar
  50. Moldrup, P., T. Olesen, H. Blendstrup, T. Komatsu, L.W. de Jonge, D.E. Rolston (2007): Predictive-descriptive models for gas and solute diffusion coefficients in variably saturated porous media coupled to pore-size distribution: IV. Solute diffusivity and the liquid phase impedance factor. Soil Sci 172: 741–750Google Scholar
  51. Nobles, M.M., L.P. Wilding & K.J. Mcinnes (2004): Pathways of dye tracer movement through structured soils on a macroscopic scale. Soil Sci 169: 229–242Google Scholar
  52. Ochsner, T.E., T.J. Sauer & R. Horton (2007): Soil heat storage measurements in energy balance studies. Agronomy J 99: 311–319Google Scholar
  53. Oliveira, G.C., M.S. Dias, D.V.S. Resck & N. Curi (2004): Chemistry and physical-hydric characterization of a Red Latosol after 20 years of different soil use and management. Revista Brasileira De Ciencia Do Solo 28: 327–336Google Scholar
  54. Overduin, P.P. (2006): Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating. Cold Regions Sci Tech 45: 8–22Google Scholar
  55. Park, E.-J. & A. Smucker (2005): Saturated hydraulic conductivity and porosity within macroaggregates modified by tillage. Soil Sci Soc Am J 69: 38–45Google Scholar
  56. Peng, X. & R. Horn (2005): Modeling soil shrinkage curve across a wide range of soil types. Soil Sci Soc Am J 69: 584–592Google Scholar
  57. Peng, X. & R. Horn (2007): Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur. J Soil Sci 58: 98–107Google Scholar
  58. Pereira, J.O., P. Defossez & G. Richard (2007): Soil susceptibility to compaction by wheeling as a function of some properties of a silty soil as affected by the tillage system. Euro J Soil Sci 58: 34–44Google Scholar
  59. Perfect, E., M.C. Sukop & G.R. Haszler (2002): Prediction of dispersivity for undisturbed soil columns from water retention parameters. Soil Sci Soc Am J 66: 696–701Google Scholar
  60. Persson, M. & R. Berndtsson (1998): Estimating transport parameters in an undisturbed soil column using time domain reflectometry and transfer function theory. J Hydrol 205: 232–247Google Scholar
  61. Peth, S. & R. Horn (2006): The mechanical behavior of structured and homogenized soil under repeated loading. J Plant Nutr Soil Sci 169: 401–410Google Scholar
  62. Peth, S., R. Horn, F. Beckmann, T. Donath, J. Fischer & A.J.M. Smucker (2008): 3D Quantification of Intraaggregate Pore Space Features using Synchrotron- Radiation-based Microtomography. Soil Sci Soc Am J 72: 897–907Google Scholar
  63. Pieri, L., M. Bittelli & P.R. Pisa (2006): Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma 135: 118–132Google Scholar
  64. Renger, M. & O. Strebel (1982): Beregnungsbedürftigkeit der landwirtschaftlichen Nutzpflanzen in Niedersachsen. Geol Jb R F, BGR Hannover, H. 13Google Scholar
  65. Richter, J. & A. Grossgebauer (1978): Untersuchungen zum Bodenlufthaushalt in einem Bodenbearbeitungsversuch. 2.Gasdiffusionskoeffizient als Strukturmaß für Böden. Z Pflanzenern Bodenkde 141: 201–208Google Scholar
  66. Ross G. & D.V.B. de Kretser (2001): A structural model for the time-dependent recovery of mineral suspensions. Rheol Acta 40: 582–590Google Scholar
  67. Rossel, R.A.V., B. Minasny, P. Roudier & A.B. Mcbratney (2006): Colour space models for soil science. Geoderma 133: 320–337Google Scholar
  68. Ruser, R., H. Flessa, R. Schilling, H. Steindl & F. Beese (1998): Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Biol & Fert of Soils 30: 544–549Google Scholar
  69. Sauer, T. & R. Horton (2005): Soil heat flux. Am Soc of Agronomy: 131–154Google Scholar
  70. Schack-Kirchner, H. & E. Hildebrand (1998): Changes in soil structure and aeration due to liming and acid irrigation. Plant & Soil 199: 167–176Google Scholar
  71. Sharma, R.S. (2003): Patterns and mechanisms of migration of light non-aqueous phase liquid in an unsaturated sand. Géotechnique 53: 225–240Google Scholar
  72. Simojoki, A. (2001): Oxygen Supply to plant roots in cultivated mineral soils. PHD Thesis, Univ. Helsinki, Pro Terra 7Google Scholar
  73. Simojoki, A., O. Fazekas-Becker & R. Horn (2008): Macro- and microscale gaseous diffusion in a stagnic Luvisol as affected by compaction and reduced tillage. Agricult & Food Sci 17: 267–277Google Scholar
  74. Simunek, J., N.J. Jarvis, M.T. van Genuchten & A. Gardenas (2003): Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J Hydrol 272: 14–35Google Scholar
  75. Smucker, A., E.J. Park, J. Dörner & R. Horn (2007): Soil Micropore development and contributions to soluble carbon transport within microagggregates. Vadose Zone J 6: 282 – 290Google Scholar
  76. SU, Y.Z., H.L. Zhao, W.Z. Zhao & T.H. Zhang (2004): Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma 122: 43–49Google Scholar
  77. Svensson, U. (2001): A continuum representation of fracture networks. Part I: Method and basic test cases. J Hydrol 250: 170–186Google Scholar
  78. Tan, X., S. Chang & R. Kabzems (2008): Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biology and Fertility of Soils 44: 471–479Google Scholar
  79. Täumler, K., H. Stoffregen & G. Wessolek (2005): Determination of repellency distribution using soil organic matter and water content. Geoderma 125: 107–115Google Scholar
  80. Tippkötter, R. (1983): Morphology, spatial arrangement and origin of macropores in some Hapludalfs, West Germany. Geoderma 29: 353–371Google Scholar
  81. Topp, G.C., B. Dow, M. Edwards, E.G. Gregorich, W.E. Curnoe & F.T. Cook (2000): Oxygen measurements in the root zone facilitated by TDR. Canad J Soil Sci 80: 33–41Google Scholar
  82. Tuller, M. & D. OR (2005): Water films and scaling of soil characteristic curves at low water contents. Water Res Res 41: 09401–09406Google Scholar
  83. Usowicz, B., J. Lipiec & A. Ferrero (2006): Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. Int J Heat Mass Transfer 49: 5010–5017Google Scholar
  84. Veneziano, D. & A. Tabaei (2004): Nonlinear spectral analysis of flow through porous media with isotropic lognormal hydraulic conductivity. Stochastic Models of Flow and Transport in Multiple-scale Heterogeneous Porous Media. J Hydrol 294: 4–17Google Scholar
  85. Wessolek, G., K. Schwarzel, A. Greiffenhagen & H. Stoffregen (2008): Percolation characteristics of a water-repellent sandy forest soil. Eur J Soil Sci 59: 14–23Google Scholar
  86. Wheeler, S.J. (2003): Coupling of hydraulic hysteresis and stress – Strain behaviour in unsaturated soils. Géotechnique 53: 41–54Google Scholar
  87. Wiermann, C. (1998): Auswirkungen differenzierter Bodenbearbeitung auf die Bodenstabilität und das Regenerationsvermögen lößbürtiger Ackerstandorte. Diss. Thesis, CAU KielGoogle Scholar
  88. Williams, C.F., J. Letey & W.J. Farmer (2006): Estimating the potential for facilitated transport of napropamide by dissolved organic matter. Soil Sci Soc Am J 70: 24–30Google Scholar
  89. Woche, S.K., M.-O. Goebel, M.B. Kirkham, R. Horton, R.R. Van der Ploeg & J. Bachmann (2005): Contact angle of soils as affected by depth, texture, and land management. Eur J Soil Sci 56: 239–251Google Scholar
  90. Yates, L.M. & R. Von Wandruszka (1999): Effects of pH and metals on the surface tension of aqueous humic material. Soil Sci Soc Am J 63: 1645–1649Google Scholar
  91. Zhang, B., R. Horn & P.D. Hallett (2005): Mechanical Resilience of Degraded Soil Amended with Organic Matter. Soil Sci Soc Am J 69: 864–871Google Scholar
  92. Zhang, H.F., X.S. Ge, H. Ye & D.S. Jiao, 2007. Heat conduction and heat storage characteristics of soils. Appl. Thermal Engineer., 27: 369–373.Google Scholar
  93. Zhang, Y., S. Wang, A.G. Baff & T.A. Black (2008): Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Regions Sci & Technol 52: 355–370Google Scholar
  94. Zobeck, T.M. (2004): Rapid soil particle size analyses using laser diffraction. Applied Engineering in Agriculture 20: 633–639Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hans-Peter Blume
    • 1
    Email author
  • Gerhard W. Brümmer
    • 2
  • Rainer Horn
    • 3
  • Ellen Kandeler
    • 4
  • Ingrid Kögel-Knabner
    • 5
  • Ruben Kretzschmar
    • 6
  • Karl Stahr
    • 7
  • Berndt-Michael Wilke
    • 8
  1. 1.KielDeutschland
  2. 2.BodenwissenschaftenINRESBonnDeutschland
  3. 3.Institut Pflanzenernährung und BodenkundeUniversität KielKielDeutschland
  4. 4.Institut für Bodenkunde und StandortslehreUniversität HohenheimStuttgartDeutschland
  5. 5.Lehrstuhl für BodenkundeTU MünchenFreising-WeihenstephanDeutschland
  6. 6.Institut für biogeochemie und schadstoffdynamikETH ZürichZürichSchweiz
  7. 7.Institut für BodenkundeUniversität HohenheimStuttgartDeutschland
  8. 8.Fakultät VII Architektur,Umwelt,GesellsTU BerlinBerlinDeutschland

Personalised recommendations