Advertisement

Chemische Eigenschaften und Prozesse

  • Hans-Peter BlumeEmail author
  • Gerhard W. Brümmer
  • Rainer Horn
  • Ellen Kandeler
  • Ingrid Kögel-Knabner
  • Ruben Kretzschmar
  • Karl Stahr
  • Berndt-Michael Wilke
Chapter

Zusammenfassung

Viele Regelungsfunktionen von Böden (Kap. 10.1) beruhen auf biogeochemischen Prozessen und werden deshalb von den chemischen Eigenschaften der Böden beeinflusst. Beispiele hierfür sind die Speicherung und Nachlieferung von Nährstoffen, die Sorption und der Abbau von Schadstoffen sowie die Pufferung von Säureeinträgen. Chemische Prozesse an Grenzflächen sind dabei von herausragender Bedeutung.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Fachbücher

  1. Arai, Y. & D. L. Sparks (2007): Phosphate reaction dynamics in soils and soil components: A multiscale approach. – Adv. Agron. 94, 135…179.Google Scholar
  2. Bartlett, R. J. & B. R. James (1993): Redox chemistry of soils. – Adv. Agron. 50, 151…208.Google Scholar
  3. Berner, E. & R. Berner (1996): Global Environment: Water, Air, and Geochemical Cycles, Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
  4. Bohn, H. L., B. L. Mcneal & G. A. O’Connor (2001): Soil Chemistry, 3. Aufl., Wiley, New York.Google Scholar
  5. Bolan, N. S., D. C. Adriano & D. Curtin (2003): Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. – Adv. Agron. 78, 215…272.Google Scholar
  6. Bolan, N. S., R. Naidu, J. K. Syers & R. W. Tillman (1999): Surface charge and solute interactions in soils. – Adv. Agron. 67, 87…140.Google Scholar
  7. Brown, G. E. JR., G. A. Parks & P. A. O’DAY (1995): Sorption at mineral-water interfaces: macroscopic and microscopic perspectives. In: Vaughan, D. J. & R. A. D. Pattrick (Ed.): Mineral Surfaces, Chapman & Hall, London. Jr.Google Scholar
  8. Carrillo-Gonzalez, R., J. Simunek, S. Sauve & D. Adriano (2006): Mechanisms and pathways of trace element mobility in soils. – Adv. Agron. 91, 111…178.Google Scholar
  9. Chorover, J., R. Kretzschmar, F. Garcia-Pichel & D. L. Sparks (2007): Soil biogeochemical processes within the Critical Zone. – Elements 3, 321…326.Google Scholar
  10. Davis, J. A. & D. B. Kent (1990): Surface complexation modeling in aqueous geochemistry. In: Hochella, M. F. J. & A. F. White (Hrsg.): Mineral-Water Interface Geochemistry, Mineralogical Society of America, Washington, D.C.Google Scholar
  11. Essington, M. E. (2004): Soil and Water Chemistry: An Integrative Approach, CRC Press, Boca Raton.Google Scholar
  12. Evangelou, V. P. (1998): Environmental Soil and Water Chemistry: Principles and Applications, Wiley, New York.Google Scholar
  13. Fageria, N. K. & V. C. Baligar (2008): Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. – Adv. Agron. 99, 345…399.Google Scholar
  14. Fendorf, S. E., D. L. Sparks, G. M. Lamble & M. J. Kelley (1994): Applications of X-ray-absorption fine structure spectroscopy to soils. – Soil Sci. Soc. Am. J. 58, 1583…1595.Google Scholar
  15. Fiedler, S., M. J. Vepraskas & J. L. Richardson (2007): Soil redox potential: Importance, field measurements, and observations. – Adv. Agron. 94, 1…54.Google Scholar
  16. Ford, R. G., A. C. Scheinost & D. L. Sparks (2001): Frontiers in metal sorption/precipitation mechanisms on soil mineral surfaces. – Adv. Agron. 74, 41…62.Google Scholar
  17. Goldberg, S. (1992): Use of surface complexation models in soil chemical systems. – Adv. Agron. 47, 233…329.Google Scholar
  18. Hiradate, S., J. F. MA & H. Matsumoto (2007): Strategies of plants to adapt to mineral stresses in problem soils. – Adv. Agron. 96, 65…132.Google Scholar
  19. Hochella, M. F., S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks & B. S. Twining (2008): Nanominerals, mineral nanoparticles, and Earth systems. – Science 319, 1631…1635.Google Scholar
  20. Hochella, M. F. J. & A. F. White (Hrsg.) (1990): Mineral- Water Interface Geochemistry, Mineralogical Society of America, Washington, D.C.Google Scholar
  21. Huang, P. M. (2004): Soil mineral-organic matter-microorganism interactions: Fundamentals and impacts. – Adv. Agron. 82, 391…472.Google Scholar
  22. Jardine, P. M. (2008): Influence of coupled processes on contaminant fate and transport in subsurface environments. – Adv. Agron. 99, 1…99.Google Scholar
  23. Johnston, C. T. & E. Tombacz (2002): Surface chemistry of soil minerals. In: Dixon, J. B. & D. G. Schulze (Ed.): Soil Minerals with Environmental Applications, Soil Science Society of America, Madison, Wisconsin.Google Scholar
  24. Karathanasis, A. D. (2002): Mineral equilibria in environmental soil systems. In: Dixon, J. B. & D. G. Schulze (Ed.): Soil Mineralogy with Environmental Applications, Soil Sience Society of America, Madison, Wisconsin.Google Scholar
  25. Kraemer, S. M., D. E. Crowley & R. Kretzschmar (2006): Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. – Adv. Agron. 91, 1…46.Google Scholar
  26. Kretzschmar, R., M. Borkovec, D. Grolimund & M. Elimelech (1999): Mobile subsurface colloids and their role in contaminant transport. – Adv. Agron. 66, 121…193.Google Scholar
  27. Kretzschmar, R. & T. Schaefer (2005): Metal retention 5 and transport on colloidal particles in the environment. – Elements 1, 205…210.Google Scholar
  28. Langmuir, D. (1997): Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
  29. Limousin, G., J. P. Gaudet, L. Charlet, S. Szenknect, V. Barthes & M. Krimissa (2007): Sorption isotherms: A review on physical bases, modeling and measurement. – Appl. Geochem. 22, 249…275.Google Scholar
  30. Lindsay, W. L. (1979): Chemical Equilibria in Soils, Wiley, New York.Google Scholar
  31. Manthey, J. A., D. E. Crowley & D. G. Luster (Hrsg.) (1994): Biochemistry of Metal Micronutrients in the Rhizosphere, Lewis Publishers, Boca Raton.Google Scholar
  32. Marschner, H. (1995): Mineral Nutrition of Higher Plants, 2. Aufl., Academic Press, London.Google Scholar
  33. Maurice, P. A. & M. F. Hochella (2008): Nanoscale particles and processes: A new dimension in soil science. – Adv. Agron. 100, 123…153.Google Scholar
  34. Mcbride, M. B. (1989): Surface chemistry of soil minerals. In: DIXON, J. B. & S. B. WEED (Hrsg.): Minerals in Soil Environments, 2. Aufl., Soil Science Society of America, Madison, Wisconsin.Google Scholar
  35. Mcbride, M. B. (1994): Environmental Chemistry of Soils, Oxford University Press, New York.Google Scholar
  36. Merdy, P., L. K. Koopal & S. Huclier (2006): Modeling metal-particle interactions with an emphasis on natural organic matter. – Environ. Sci. Technol. 40, 7459…7466.Google Scholar
  37. Murad, E. & W. R. Fischer (1988): The geobiochemical cycle of iron. In: Stucki, J. W., B. A. Goodman & U. Schwertmann (Hrsg.): Iron in Soils and Clay Minerals, Kluwer Academic Publishers, Dordrecht.Google Scholar
  38. Oze, C., S. Fendorf, D. K. Bird & R. G. Coleman (2004): Chromium geochemistry of serpentine soils. – Intern. Geol. Rev. 46, 97…126.Google Scholar
  39. Qafoku, N. P., E. van Ranst, A. Noble & G. Baert (2004): Variable charge soils: Their mineralogy, chemistry and management. – Adv. Agron. 84, 159…215.Google Scholar
  40. Rai, D. & J. A. Kittrick (1989): Mineral equilibria and the soil system. In: Dixon, J. B. & S. B. Weed (Hrsg.): Minerals in Soil Environments, 2. Aufl., Soil Science Society of America, Madison, Wisconsin.Google Scholar
  41. Ritchie, G. S. P. & G. Sposito (1995): Speciation in soils. In: URE, A. M. & C. M. Davidson (Hrsg.): Chemical Speciation in the Environment, Blackie and Son, Glasgow.Google Scholar
  42. Robarge, W. P. (1999): Precipitation/dissolution reactions in soils. In: Sparks, D. L. (Hrsg.): Soil Physical Chemistry, 2. Aufl., CRC Press, Boca Raton.Google Scholar
  43. Robin, A., G. Vansuyt, P. Hinsinger, J. M. Meyer, J. F. Briat & P. Lemanceau (2008): Iron dynamics in the rhizoshere: Consequences for plant health and nutrition. – Adv. Agron. 99, 183…225.Google Scholar
  44. Schnitzer, M. (2000): A lifetime perspective on the chemistry of soil organic matter. – Adv. Agron. 68, 1…58.Google Scholar
  45. Schwarzenbach, R. P., P. M. Gschwend & D. M. Imboden (2003): Environmental Organic Chemistry, 2. Aufl., Wiley, Hoboken.Google Scholar
  46. Sparks, D. L. (2001): Elucidating the fundamental chemistry of soils: past and recent achievements and future frontiers. – Geoderma 100, 303…319.Google Scholar
  47. Sparks, D. L. (2003): Environmental Soil Chemistry, 2. Aufl., Academic Press, San Diego.Google Scholar
  48. Sposito, G. (1989): The Chemistry of Soils, Oxford University Press, New York.Google Scholar
  49. Sposito, G. (1994): Chemical Equilibria and Kinetics in Soils, Oxford University Press, New York.Google Scholar
  50. Sposito, G. (Ed., 1995): The Environmental Chemistry of Aluminum, 2. Aufl., CRC Press, Boca Raton.Google Scholar
  51. Sposito, G. (2004): The Surface Chemistry of Natural Particles, Oxford University Press, New York.Google Scholar
  52. Stevenson, F. J. (1994): Humus Chemistry: Genesis, Composition, Reactions, 2. Aufl., Wiley, New York.Google Scholar
  53. Stumm, W. (1992): Chemistry of the Solid-Water Interface, Wiley, New York.Google Scholar
  54. Stumm, W. & J. J. Morgan (1996): Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York.Google Scholar
  55. Suarez, D. L. (1999): Thermodynamics of the soil solution. In: SPARKS, D. L. (Hrsg.): Soil Physical Chemistry, 2. Aufl., CRC Press, Boca Raton.Google Scholar
  56. Sumner, M. E. (Hrsg.) (2000): Handbook of Soil Sciences, CRC Press, Boca Raton.Google Scholar
  57. Sutton, R. & G. Sposito (2005): Molecular structure in soil humic substances: The new view. – Environ. Sci. Technol. 39, 9009…9015.Google Scholar
  58. Tipping, E. (2002): Cation Binding by Humic Substances, Cambridge University Press, Cambridge, UK.Google Scholar

Zitierte Spezialliteratur

  1. Berner, E. & R. Berner (1996): Global Environment: Water, Air, and Geochemical Cycles, Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
  2. Bradford, G. R., F. L. Bair & V. Hunsacker (1971): Trace and major element contents of soil saturation extracts. – Soil Sci. 112, 225…230.Google Scholar
  3. Brown, B. A., R. I. Munsell, R. F. Holt & A. V. King (1956): Soil reactions at various depths as influenced by time since application and amounts of limestone. – Soil Sci. Soc. Am. Proc. 20, 518…522.Google Scholar
  4. Campbell, D. J. & P. H. T. Beckett (1988): The soil solution in a soil treated with digested sewage sludge. – J. Soil Sci. 39, 283…298.Google Scholar
  5. Christl, I. & R. Kretzschmar (1999): Competitive sorption of copper and lead at the oxide-water interface: Implications for surface site density. – Geochim. Cosmochim. Acta 63, 2929…2938.Google Scholar
  6. Christl, I., H. Knicker, I. Kogel-Knabner & R. Kretzschmar (2000): Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollow-fibre ultrafiltration. – Eur. J. Soil Sci. 51, 617…625.Google Scholar
  7. Davis, J. A. & D. B. Kent (1990): Surface complexation modeling in aqueous geochemistry. In: Hochella, M. F. J. & A. F. White (Hrsg.): Mineral-Water Interface Geochemistry, Mineralogical Society of America, Washington, D.C.Google Scholar
  8. Essington, M. E. (2004): Soil and Water Chemistry: An Integrative Approach, CRC Press, Boca Raton.Google Scholar
  9. Fieldes, M. & R. K. Schofield (1960): Mechanisms of ion adsorption by inorganic soil colloids. – New Zealand J. Sci. 3, 563…679.Google Scholar
  10. Fischer, L., G. W. Brummer & N. J. Barrow (2007): Observations and modelling of the reactions of 10 metals with goethite: adsorption and diffusion processes. – Eur. J. Soil Sci. 58, 1304…1315.Google Scholar
  11. Furrer, G. & W. Stumm (1986): The coordination chemistry of weathering: I. Dissolution kinetics of d-Al2O3 and BeO. – Geochim. Cosmochim. Acta 50, 1847…1860.Google Scholar
  12. Goldberg, S. (1992): Use of surface complexation models in soil chemical systems. – Adv. Agron. 47, 233…329.Google Scholar
  13. Hiemstra, T. & W. H. van Riemsdijk (1996): A surface structural approach to ion adsorption: The charge distribution (CD) model. – J. Colloid Interface Sci. 179, 488…508.Google Scholar
  14. Kreuzer, K. (1995): Effects of forest liming on soil processes. – Plant & Soil 168, 447…470.Google Scholar
  15. Langmuir, D. (1997): Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
  16. Okazaki, M. K., K. Sakaidani, T. Saigusa & N. Sakaida (1989): Ligand exchange of oxyanions on synthetic hydrated oxides of iron and aluminum. – Soil Sci. Plant Nutr. 35, 337…346.Google Scholar
  17. Robarge, W. P. (1999): Precipitation/dissolution reactions in soils. In: Sparks, D. L. (Hrsg.): Soil Physical Chemistry, 2. Aufl., CRC Press, Boca Raton.Google Scholar
  18. Schachtschabel, P. (1951): Die Methoden zur Bestimmung des Kalkbedarfs im Boden. – Z. Pflanzenern. Düng. Bodenk. 54, 134…145.Google Scholar
  19. Stumm, W. (1992): Chemistry of the Solid-Water Interface, Wiley, New York.Google Scholar
  20. Stumm, W. & J. J. Morgan (1996): Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York.Google Scholar
  21. Suarez, D. L. (1999): Thermodynamics of the soil solution. In: SPARKS, D. L. (Hrsg.): Soil Physical Chemistry, 2. Aufl., CRC Press, Boca Raton.Google Scholar
  22. Tipping, E. (2002): Cation Binding by Humic Substances, Cambridge University Press, Cambridge, UK.Google Scholar
  23. van Raij, B. & M. Peech (1972): Electrochemical properties of some Oxisols and Alfisols of the tropics. – Soil Sci. Soc. Am. Proc. 36, 587…593.Google Scholar
  24. Walthert, L., S. Zimmermann, P. Blaser & P. Lüscher (2004): Waldböden der Schweiz. Band 1. Grundlagen und Region Jura, Hep Verlag, Bern.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hans-Peter Blume
    • 1
    Email author
  • Gerhard W. Brümmer
    • 2
  • Rainer Horn
    • 3
  • Ellen Kandeler
    • 4
  • Ingrid Kögel-Knabner
    • 5
  • Ruben Kretzschmar
    • 6
  • Karl Stahr
    • 7
  • Berndt-Michael Wilke
    • 8
  1. 1.KielDeutschland
  2. 2.BodenwissenschaftenINRESBonnDeutschland
  3. 3.Institut Pflanzenernährung und BodenkundeUniversität KielKielDeutschland
  4. 4.Institut für Bodenkunde und StandortslehreUniversität HohenheimStuttgartDeutschland
  5. 5.Lehrstuhl für BodenkundeTU MünchenFreising-WeihenstephanDeutschland
  6. 6.Institut für biogeochemie und schadstoffdynamikETH ZürichZürichSchweiz
  7. 7.Institut für BodenkundeUniversität HohenheimStuttgartDeutschland
  8. 8.Fakultät VII Architektur,Umwelt,GesellsTU BerlinBerlinDeutschland

Personalised recommendations