Advertisement

Organische Bodensubstanz

  • Hans-Peter BlumeEmail author
  • Gerhard W. Brümmer
  • Rainer Horn
  • Ellen Kandeler
  • Ingrid Kögel-Knabner
  • Ruben Kretzschmar
  • Karl Stahr
  • Berndt-Michael Wilke
Chapter

Zusammenfassung

Die Masse der organischen Bodensubstanz macht in den meisten Oberböden nur wenige Prozentanteile aus, hat aber entscheidenden Einfluss auf alle Bodenfunktionen und spielt eine zentrale Rolle im globalen Kreislauf des Kohlenstoffs. Der Kohlenstoffgehalt bzw. der Schwarzanteil der Bodenfarbe sind daher ein differenzierendes Kriterium bei der Profilansprache in der deutschen und in internationalen Klassifikationen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  1. Bachmann, J., G. Guggenberger, T. Baumgartl, R.J. Ellerbrock, W.R. Fischer, M.-O. Goebel, R. Horn, E. Jasinska & K. Kaiser (2007): Physical carbon-sequestration mechanisms under special consideration of soil wettability. – J. Plant Nutr. Soil Sci. 170, 14….26.Google Scholar
  2. Baldock, J.A., P.N. Nelson (2000): Soil organic matter. Kap. B2 in M. Sumner (Hrsg.): Handbook of soil science. CRC, Boca RatonGoogle Scholar
  3. Doerr, S.H., C.J. Ritsema, L.W. Dekker, D.F. Scott & D. Carter (2007): Water repellence of soils: new insights and emerging research needs. – Hydrol. Processes 21, 2223….2228.Google Scholar
  4. Friedel, J.K., E. Lettger (2003): Bodenhumus: Nährstoffgehalte und Nachlieferung. Kap. 2.2.6.2 Blume et al., ed.(1996ff): Hb der Bodenkunde. Wiley-VCH, WeinheimGoogle Scholar
  5. Gregorich, E.G., M.H. Beare, U.F. Mckim & J.O. Skjemstad (2006): Chemical and biological characteristics of physically uncomplexed organic matter. – Soil Sci Soc. Am. J. 70 , 975….985.Google Scholar
  6. Haider, K. (1996): Biochemie des Bodens – Enke, Stuttgart.Google Scholar
  7. Hedges, J.I., G. Eglington, P.G. Hatcher, D.L. Kirchman, C. Arnosti, S. Derenne, R.P. Evershed, I. Kögelknabner, J.W. DE Leeuw, R. Littke, W. Michaelis & J. Rullkötter (2000): The molecularly-uncharacterized component of nonliving organic matter in natural environments. – Org. Geochem. 31, 945….958.Google Scholar
  8. Jenkinson, D.S. (1990): The turnover of organic carbon and nitrogen in soil. – Phil. Trans. R. Soc. B, 329, 361….368.Google Scholar
  9. Lal, R. (2008): Soils and sustainable agriculture. A review. – Agron. Sustain. Dev. 28, 57….64.Google Scholar
  10. Knicker, H. (2007): How does fire affect the nature and stability of soil organic nitrogen and carbon? – A review. – Biogeochem. 85, 91….118.Google Scholar
  11. Kögel-Knabner, I. (2002): A review on the macromolecular organic composition in plant and microbial residues as input to soil. – Soil Biol. Biochem. 34, 139….162.Google Scholar
  12. Kögel-Knabner, I., G. Guggenberger, M. Kleber, E. Kandeler, K. Kalbitz, S. Scheu, K. Eusterhues & P. Leinweber (2008): Organo-mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. – J. Plant Nutr. Soil Sci. 171, 61….82.Google Scholar
  13. Marschner, B. S. Brodowski, A. Dreves, G. Gleixner, P.-M. Grootes, U. Hamer, A. Heim, G. Jandl, R. JI, K. Kaiser, K. Kalbitz, C. Kramer, P. Leinweber, J. Rethemeyer, M.W.I. Schmidt, L. Schwark, & G.L.B. Wiesenberg (2008): How relevant is recalcitrance for the stabilization of organic matter in soils? – J. Plant Nutr. Soil Sci. 171, 91….110.Google Scholar
  14. Oades, J.M. (1988): The retention of organic matter in soils. Biogeochem. 5, 35….70.Google Scholar
  15. Scharpenseel, H.-W., F.-M. Pfeiffer, P. Becker-Heidmann (2002): Alter der Humusstoffe. Kap. 2.2.3.5 in Blume et al., ed. (1996ff): Hb der Bodenkunde. Wiley-VCH, WeinheimGoogle Scholar
  16. Swift, M.J., O.W. Heal & J. M. Anderson (1979): Decomposition in terrestrial ecosystems. -Blackwell, Oxford.Google Scholar
  17. V. Lützow, M., I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner & B. Marschner (2007): SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. – Soil Biol. Biochem. 39, 2183….2207.Google Scholar
  18. V. Lützow, M., I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner & H. Flessa (2006): Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review. – Eur. J. Soil Sci. 57, 426….445.Google Scholar
  19. Waksman, S.A. (1938): Humus: Origin, chemical composition and importance to nature. -Baillière, Tindall & Cox, London.Google Scholar

Zitierte Spezialliteratur

  1. Ansorge, H. (1957): Z. Landw. Vers.-Untersuchungswes. 3, 499.Google Scholar
  2. Batjes, N.H. (1996): Total carbon and nitrogen in the soils of the world. – Eur. J. Soil Sci. 47, 151….163.Google Scholar
  3. Blankenburg, J. & W. Schäfer (1999): Bodenlandschaft der Moore in den Talsandniederungen der Altmoränenlandschaften, Moore im Teufelsmoor (Exkursion G 2). – Mitt. Deutschen Bodenk. Gesellschaft 90, 231….247.Google Scholar
  4. Coleman, K. & D.S. Jenkinson (1999): RothC-26.3, A Model for the Turnover of Carbon in Soil: Model Description and User’s Guide. – Lawes Agricultural Trust, Harpenden, UK.Google Scholar
  5. Dein, H. & H. Mertens (1955): – Z. Acker- und Pflanzenbau 100, 137.Google Scholar
  6. ECCP [European Climate Change Programme] (2003): Working group sinks related to agricultural soils. – Final report, 76 pp.Google Scholar
  7. Eusterhues, K., C. Rumpel, M. Kleber & I. Kögel-Knabner (2003): Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. – Org. Geochem. 34, 1591…1600.Google Scholar
  8. Eusterhues, K., C. Rumpel & I. Kögel-Knabner (2005): Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. – Eur. J. Soil Sci. 56, 753…763.Google Scholar
  9. Fengel, D. & G. Wegener (1989): Wood: Chemistry, ultrastructure, reactions. – De Gruyter, Berlin.Google Scholar
  10. Flessa, H., W. Amelung, M. Helfrich, G.L.B.Wiesenberg, G. Gleixner, S. Brodowski, J. Rethemeyer, C. Kramer & P.-M. Grootes (2008): Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. – J. Plant Nutr. Soil Sci. 171, 36….51.Google Scholar
  11. Garten, J., T. Charles & P.J. Hanson (2006): Measured forest soil C stocks and estimated turnover times along an elevation gradient. – Geoderma 136, 342….352.Google Scholar
  12. Guggenberger, G., W. Zech, L. Haumaier & B.T. Christensen (1994): Land use effects on the composition of organic matter in particle-size separates of soils. II. CP-MAS and solution 13C-NMR analysis. – Eur. J. Soil Sci. 46, 147….158.Google Scholar
  13. Haider, K. (1992): Problems related to the humification processes in soils of the temperate climate. In: J.-M. Bollag & G. Stotzky (Hrsg.): – Soil Biochemistry 7, 55…94. Dekker, New York.Google Scholar
  14. Haynes, R.J. (2005): Labile organic matter fractions as central components of the quality of agricultural soils: an overview. – Advances in Agronomy 85, 221….268.Google Scholar
  15. Helfrich, M., H. Flessa, R. Mikutta, A. Dreves & B. Ludwig (2007): Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. – Eur. J. Soil Sci. 58, 1316….1329.Google Scholar
  16. Iverson, H. (1953): Phosphorsäure 13, 200.Google Scholar
  17. Jenkinson, D.S (1977): Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C-labelled ryegrass decomposing under field conditions. – J. Soil Sci. 28, 424….434.Google Scholar
  18. Jenkinson, D.S. (1988): Soil organic matter and its dynamics. In: A. Waid (Hrsg.): Russel’s soil conditions and plant growth, 11 ed., 564….607 – Longman, Harlow.Google Scholar
  19. Jenkinson, D.S. (1981): The fate of plant and animal residues in soil. In: The chemistry of soil processes (ed. M.H.B. Hayes), 505….561. – Wiley, ChichesterGoogle Scholar
  20. John, B., T. Yamashita, B. Ludwig & H. Flessa (2005): Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. – Geoderma, 128, 63….79.Google Scholar
  21. Kalbitz, K., B. Glaser & R. Bol (2004): Clear-cutting of a Norway spruce stand: implications for controls on the dynamics of dissolved organic matter in the forest floor. – Eur. J. Soil Sci. 55, 401….413.Google Scholar
  22. Kalbitz, K., A. Meyer, R. Yang & P. Gerstberger (2007): Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. – Biogeochem. 86, 301….318.Google Scholar
  23. Kögel-Knabner, I., K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, B. Marschner & M. von Lützow (2008): An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. – J. Plant Nutr. Soil Sci. 171, 5….13.Google Scholar
  24. Knorr, W., I. Prentice, J.I. House & E.A. Holland (2005): Long-term sensitivity of soil carbon turnover to warming. – Nature 433, 298….301.Google Scholar
  25. Ladd, J.N., R.C. Foster, P. Nannipieri & J.M. Oades (1996): Soil structure and biological activity. In: Bollag, J.-M. & G. Stotzky (Hrsg.): – Soil Biochem. 9, 23….78. Dekker, New York.Google Scholar
  26. Lair, G.H., M.H. Gerzabek & G. Haberhauer (2007): Sorption of heavy metals on organic and inorganic soil constituents. – Environ Chem Lett. 5, 23….27.Google Scholar
  27. Ludwig, B., M. Helfrich & H. Flessa (2005): Model ling the long-term stabilization of carbon from maize in a silty soil. – Plant and Soil 278, 315….325.Google Scholar
  28. Neumann, F. (1979): Böden in Landschaftsausschnitten Bayerns. II. Südliches Tertiär-Hügelland und Ampertal. – Bayer. Landw. Jb. 56, 960….971.Google Scholar
  29. Olah, G.-M., O. Reisinger & G. Kilbertus (1978): Biodégradation et humification. Atlas ultrastructural. – Presses de l’université Laval, Quebec.Google Scholar
  30. Rethemeyer, J. (2004) : Organic carbon transformation in agricultural soils: Radiocarbon analysis of organic matter fractions and biomarker compounds. – Dissertation, Christian-Albrechts-UniversitätGoogle Scholar
  31. Rumpel, C., I. Kögel-Knabner & F. Bruhn (2002): Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. – Org. Geochem. 33, 1131….1142.Google Scholar
  32. Schmalfuss, K. & G. Kolbe (1961): Wiss. Z. Univ. Halle, Math.-Nat. X, S. 425.Google Scholar
  33. Schmidt, M.W.I., J.O. Skjemstad, E. Gehrt & I. Kögelknabner (1999): Charred organic carbon in German chernozemic soils. – Eur. J. Soil Sci. 50, 351…365.Google Scholar
  34. Schöning, I. & I. Kögel-Knabner (2006): Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. – Soil Biol. Biochem. 38, 2411….2424.Google Scholar
  35. Schulten, H.-R. & P. Leinweber (2000): New insights into organo-mineral particles: composition, properties and models of molecular structure. – Biol. Fertil. Soils 30, 399….432.Google Scholar
  36. Six, J., C. Feller, K. Denef, S.M. Ogle, J.C. de Moraes SA & A. Albrecht (2002): Soil organic matter, biota and aggregation in temperate and tropical soils – Effects of no-tillage. – Agronomie, 22, 755….775.Google Scholar
  37. Spielvogel, S., J. Prietzel & I. Kögel-Knabner (2006): Soil organic matter changes in a spruce ecosystem 25 years after disturbance. – Soil Sci. Soc. Am. J. 70, 2130….2145.Google Scholar
  38. Spielvogel, S., J. Prietzel & I. Kögel-Knabner (2008): Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific. – Eur. J. Soil Sci. 59, 674….692.Google Scholar
  39. Stokstad, E. (2004): Defrosting the carbon freezer of the North. In: Soils: The final frontier. – Science 304, 1618….1620.Google Scholar
  40. Trumbore, S.E. (2000): Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground dynamics. – Ecological Applications, 10, 399….411.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hans-Peter Blume
    • 1
    Email author
  • Gerhard W. Brümmer
    • 2
  • Rainer Horn
    • 3
  • Ellen Kandeler
    • 4
  • Ingrid Kögel-Knabner
    • 5
  • Ruben Kretzschmar
    • 6
  • Karl Stahr
    • 7
  • Berndt-Michael Wilke
    • 8
  1. 1.KielDeutschland
  2. 2.BodenwissenschaftenINRESBonnDeutschland
  3. 3.Institut Pflanzenernährung und BodenkundeUniversität KielKielDeutschland
  4. 4.Institut für Bodenkunde und StandortslehreUniversität HohenheimStuttgartDeutschland
  5. 5.Lehrstuhl für BodenkundeTU MünchenFreising-WeihenstephanDeutschland
  6. 6.Institut für biogeochemie und schadstoffdynamikETH ZürichZürichSchweiz
  7. 7.Institut für BodenkundeUniversität HohenheimStuttgartDeutschland
  8. 8.Fakultät VII Architektur,Umwelt,GesellsTU BerlinBerlinDeutschland

Personalised recommendations