Skip to main content

Quantum Anomalous Hall Effect

  • Chapter
  • First Online:
  • 1320 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we report the observation of the quantum anomalous Hall effect (QAHE) in Cr-doped (Bi,Sb)2Te3 TI thin films grown by MBE method. At zero magnetic field and ultralow temperature (30 mK), the gate-tuned anomalous Hall resistance reaches the predicted quantized value of h/e 2, accompanied by a considerable drop in the longitudinal resistance. Under a strong magnetic field (up to 18 T), the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chang C-Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science. 2013;340:167–70.

    Article  ADS  Google Scholar 

  2. Hall EH. On the “Rotational Coefficient” in nickel and cobalt. Philos Mag. 1881;12:157–72.

    Article  Google Scholar 

  3. Haldane FDM. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys Rev Lett. 1988;61:2015–8.

    Article  ADS  MathSciNet  Google Scholar 

  4. Yu R, Zhang W, Zhang HJ, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science. 2010;329:61–4.

    Article  ADS  Google Scholar 

  5. Qi X-L, Hughes TL, Zhang S-C. Topological field theory of time-reversal invariant insulators. Phys Rev B. 2008;78:195424.

    Article  ADS  Google Scholar 

  6. Nomura K, Nagaosa N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys Rev Lett. 2011;106:166802.

    Article  ADS  Google Scholar 

  7. Onoda M, Nagaosa N. Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals. Phys Rev Lett. 2003;90:206601.

    Article  ADS  Google Scholar 

  8. Qi X-L, Wu Y-S, Zhang S-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys Rev B. 2006;74:085308.

    Article  ADS  Google Scholar 

  9. Liu C-X, Qi X-L, Dai X, et al. Quantum anomalous Hall Effect in Hg1-yMnyTe quantum wells. Phys Rev Lett. 2008;101:146802.

    Article  ADS  Google Scholar 

  10. Qiao Z, Yang SA, Feng W, et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys Rev B. 2010;82:161414.

    Article  ADS  Google Scholar 

  11. Li ZL, Yang JH, Chen GH, et al. Strong single-ion anisotropy and anisotropic interactions of magnetic adatoms induced by topological surface states. Phys Rev B. 2012;85:054426.

    Article  ADS  Google Scholar 

  12. Chang C-Z, Zhang J, Liu M, et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv Mater. 2013;25:1065–70.

    Article  Google Scholar 

  13. von Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys Rev Lett. 1980; 45:494–7.

    Google Scholar 

  14. Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect. Rev Mod Phys. 2010;82:1539–92.

    Article  ADS  Google Scholar 

  15. Checkelsky JG, Ye J, Onose Y, et al. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat Phys. 2012;8:729–33.

    Article  Google Scholar 

  16. Jeckelmann B, Jeanneret B. The quantum Hall effect as an electrical resistance standard. Rep Prog Phys. 2001;64:1603.

    Article  ADS  Google Scholar 

  17. Wang J, Lian B, Zhang H, et al. Anomalous edge transport in the quantum anomalous Hall state. Phys Rev Lett. 2013;111:086803.

    Article  ADS  Google Scholar 

  18. Oh S. The complete quantum Hall trio. Science. 2013;340:153–4.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, J. (2016). Quantum Anomalous Hall Effect. In: Transport Studies of the Electrical, Magnetic and Thermoelectric properties of Topological Insulator Thin Films. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49927-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49927-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49925-2

  • Online ISBN: 978-3-662-49927-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics