Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1106 Accesses

Abstract

Topological insulators (TIs) are new states of quantum materials with an insulating bulk and metallic surface or edge states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore JE. The birth of topological insulators. Nature. 2010;464:194–8.

    Article  ADS  Google Scholar 

  2. Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045–67.

    Article  ADS  Google Scholar 

  3. Qi X-L, Zhang S-C. The quantum spin Hall effect and topological insulators. Phys Today. 2010;63:33–8.

    Article  ADS  Google Scholar 

  4. Qi X-L, Zhang S-C. Topological insulators and superconductors. Rev Mod Phys. 2011;83:1057–110.

    Article  ADS  Google Scholar 

  5. Zhang T, Cheng P, Chen X, et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys Rev Lett. 2009;103:266803.

    Article  ADS  Google Scholar 

  6. Alpichshev Z, Analytis JG, Chu JH, et al. STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Phys Rev Lett. 2010;104:016401.

    Article  ADS  Google Scholar 

  7. Fu L, Kane CL. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett. 2008;100:096407.

    Article  ADS  Google Scholar 

  8. Qi XL, Li R, Zang J, et al. Inducing a magnetic monopole with topological surface states. Science. 2009;323:1184–7.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Yu R, Zhang W, Zhang HJ, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science. 2010;329:61–4.

    Article  ADS  Google Scholar 

  10. Bernevig BA, Hughes TL, Zhang S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science. 2006;314:1757–61.

    Article  ADS  Google Scholar 

  11. König M, Wiedmann S, Brüne C, et al. Quantum spin Hall insulator state in HgTe quantum wells. Science. 2007;318:766–70.

    Article  ADS  Google Scholar 

  12. Fu L, Kane CL. Topological insulators with inversion symmetry. Phys Rev B. 2007;76:045302.

    Article  ADS  Google Scholar 

  13. Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase. Nature. 2008;452:970–4.

    Article  ADS  Google Scholar 

  14. Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5:438–42.

    Article  Google Scholar 

  15. Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys. 2009;5:398–402.

    Article  Google Scholar 

  16. Chen YL, Analytis JG, Chu J-H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science. 2009;325:178–81.

    Article  ADS  Google Scholar 

  17. Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett. 2009;103:146401.

    Article  ADS  Google Scholar 

  18. Anderson PW. Basic notions of condensed matter physics. Boulder, CO: Westview Press; 1997.

    Google Scholar 

  19. Landau LD, Lifshitz EM. Statistical physics. Oxford: Pergamon Press; 1980.

    MATH  Google Scholar 

  20. Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys Rev Lett. 1980;45:494–7.

    Article  ADS  Google Scholar 

  21. Thouless DJ, Kohmoto M, Nightingale MP, et al. Quantized Hall conductance in a two-dimensional periodic potential. Phys Rev Lett. 1982;49:405–8.

    Article  ADS  Google Scholar 

  22. Berry MV. Quantal phase-factors accompanying adiabatic changes. P Roy Soc Lond A Mat. 1984;392:45–57.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Haldane FDM. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys Rev Lett. 1988;61:2015–8.

    Article  ADS  MathSciNet  Google Scholar 

  24. Volovik GE. Quantized Hall-effect in superfluid He-3 Film. Phys Lett A. 1988;128:277–9.

    Article  ADS  Google Scholar 

  25. Wolf SA, Awschalom DD, Buhrman RA, et al. Spintronics: a spin-based electronics vision for the future. Science. 2001;294:1488–95.

    Article  ADS  Google Scholar 

  26. Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect. Rev Mod Phys. 2010;82:1539–92.

    Article  ADS  Google Scholar 

  27. Murakami S, Nagaosa N, Zhang S-C. Dissipationless quantum spin current at room temperature. Science. 2003;301:1348–51.

    Article  ADS  Google Scholar 

  28. Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin Hall effect. Phys Rev Lett. 2004;92:126603.

    Article  ADS  Google Scholar 

  29. Murakami S, Nagaosa N, Zhang S-C. Spin-Hall insulator. Phys Rev Lett. 2004;93:156804.

    Article  ADS  Google Scholar 

  30. Kane CL, Mele EJ. Quantum spin Hall effect in graphene. Phys Rev Lett. 2005;95:226801.

    Article  ADS  Google Scholar 

  31. Bernevig BA, Zhang S-C. Quantum spin Hall effect. Phys Rev Lett. 2006;96:106802.

    Article  ADS  Google Scholar 

  32. Min H, Hill JE, Sinitsyn NA, et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys Rev B. 2006;74:165310.

    Article  ADS  Google Scholar 

  33. Yao Y, Ye F, Qi X-L, et al. Spin-orbit gap of graphene: first-principles calculations. Phys Rev B. 2007;75:041401.

    Article  ADS  Google Scholar 

  34. Roth A, Brüne C, Buhmann H, et al. Nonlocal transport in the quantum spin Hall state. Science. 2009;325:294–7.

    Article  ADS  Google Scholar 

  35. Kane CL, Mele EJ. Z 2 topological order and the quantum spin Hall effect. Phys Rev Lett. 2005;95:146802.

    Article  ADS  Google Scholar 

  36. Fu L, Kane CL, Mele EJ. Topological insulators in three dimensions. Phys Rev Lett. 2007;98:106803.

    Article  ADS  Google Scholar 

  37. Moore JE, Balents L. Topological invariants of time-reversal-invariant band structures. Phys Rev B. 2007;75:121306.

    Article  ADS  Google Scholar 

  38. Roy R. Z 2 classification of quantum spin Hall systems: an approach using time-reversal invariance. Phys Rev B. 2009;79:195321.

    Article  ADS  Google Scholar 

  39. Fu L, Kane CL. Time reversal polarization and a Z 2 adiabatic spin pump. Phys Rev B. 2006;74:195312.

    Article  ADS  Google Scholar 

  40. Qi X-L, Hughes TL, Zhang S-C. Topological field theory of time-reversal invariant insulators. Phys Rev B. 2008;78:195424.

    Article  ADS  Google Scholar 

  41. Wu C, Bernevig BA, Zhang S-C. Helical liquid and the edge of quantum spin Hall systems. Phys Rev Lett. 2006;96:106401.

    Article  ADS  Google Scholar 

  42. Xu C, Moore JE. Stability of the quantum spin Hall effect: effects of interactions, disorder, and Z 2 topology. Phys Rev B. 2006;73:045322.

    Article  ADS  Google Scholar 

  43. Nomura K, Koshino M, Ryu S. Topological delocalization of two-dimensional massless Dirac fermions. Phys Rev Lett. 2007;99:146806.

    Article  ADS  Google Scholar 

  44. Sheng DN, Weng ZY, Sheng L, et al. Quantum spin-Hall effect and topologically invariant Chern numbers. Phys Rev Lett. 2006;97:036808.

    Article  ADS  Google Scholar 

  45. Fukui T, Hatsugai Y. Topological aspects of the quantum spin-Hall effect in graphene: Z 2 topological order and spin Chern number. Phys Rev B. 2007;75:121403.

    Article  ADS  Google Scholar 

  46. Prodan E. Robustness of the spin-Chern number. Phys Rev B. 2009;80:125327.

    Article  ADS  Google Scholar 

  47. Zhang SC. The Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall-effect. Int J Mod Phys B. 1992;6:25–58.

    Article  ADS  MathSciNet  Google Scholar 

  48. Zhang S-C, Hu J. A four-dimensional generalization of the quantum Hall effect. Science. 2001;294:823–8.

    Article  ADS  Google Scholar 

  49. Knez I, Du R-R, Sullivan G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys Rev Lett. 2011;107:136603.

    Article  ADS  Google Scholar 

  50. Hsieh D, Xia Y, Wray L, et al. Observation of unconventional quantum spin textures in topological insulators. Science. 2009;323:919–22.

    Article  ADS  Google Scholar 

  51. Yang F, Miao L, Wang ZF, et al. Spatial and energy distribution of topological Edge states in single Bi(111) Bilayer. Phys Rev Lett. 2012;109:016801.

    Article  ADS  Google Scholar 

  52. Ren Z, Taskin AA, Sasaki S, et al. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys Rev B. 2010;82:241306.

    Article  ADS  Google Scholar 

  53. Ren Z, Taskin AA, Sasaki S, et al. Optimizing Bi2−xSbxTe3−ySey solid solutions to approach the intrinsic topological insulator regime. Phys Rev B. 2011;84:165311.

    Article  ADS  Google Scholar 

  54. Ji H, Allred JM, Fuccillo MK, et al. Bi2Te1.6S1.4: a topological insulator in the tetradymite family. Phys Rev B. 2012;85:201103.

    Article  ADS  Google Scholar 

  55. Taskin AA, Ren Z, Sasaki S, et al. Observation of Dirac holes and electrons in a topological insulator. Phys Rev Lett. 2011;107:016801.

    Article  ADS  Google Scholar 

  56. Sato T, Segawa K, Guo H, et al. Direct evidence for the Dirac-cone topological surface states in the ternary chalcogenide TlBiSe2. Phys Rev Lett. 2010;105:136802.

    Article  ADS  Google Scholar 

  57. Chen YL, Liu ZK, Analytis JG, et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys Rev Lett. 2010;105:266401.

    Article  ADS  Google Scholar 

  58. Xu S-Y, Xia Y, Wray LA, et al. Topological phase transition and texture inversion in a tunable topological insulator. Science. 2011;332:560–4.

    Article  ADS  Google Scholar 

  59. Souma S, Eto K, Nomura M, et al. Topological surface states in lead-based ternary telluride Pb(Bi1−xSbx)2Te4. Phys Rev Lett. 2012;108:116801.

    Article  ADS  Google Scholar 

  60. Okamoto K, Kuroda K, Miyahara H, et al. Observation of a highly spin-polarized topological surface state in GeBi2Te4. Phys Rev B. 2012;86:195304.

    Article  ADS  Google Scholar 

  61. Eremeev SV, Landolt G, Menshchikova TV, et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nat Commun. 2012;3:635.

    Article  ADS  Google Scholar 

  62. Valla T, Ji H, Schoop LM, et al. Topological semimetal in a Bi-Bi2Se3 infinitely adaptive superlattice phase. Phys Rev B. 2012;86:241101.

    Article  ADS  Google Scholar 

  63. Nakayama K, Eto K, Tanaka Y, et al. Manipulation of topological states and the bulk band gap using natural heterostructures of a topological insulator. Phys Rev Lett. 2012;109:236804.

    Article  ADS  Google Scholar 

  64. Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature. 2009;460:1101–5.

    Article  ADS  Google Scholar 

  65. Zhang Y, He K, Chang C-Z, et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat Phys. 2010;6:584–8.

    Article  Google Scholar 

  66. Cheng P, Song C, Zhang T, et al. Landau quantization of topological surface states in Bi2Se3. Phys Rev Lett. 2010;105:076801.

    Article  ADS  Google Scholar 

  67. Hanaguri T, Igarashi K, Kawamura M, et al. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys Rev B. 2010;82:081305.

    Article  ADS  Google Scholar 

  68. Checkelsky JG, Hor YS, Liu MH, et al. Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. Phys Rev Lett. 2009;103:246601.

    Article  ADS  Google Scholar 

  69. Analytis JG, McDonald RD, Riggs SC, et al. Two-dimensional surface state in the quantum limit of a topological insulator. Nat Phys. 2010;6:960–4.

    Article  Google Scholar 

  70. Xiong J, Petersen AC, Qu D, et al. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm). Physica E. 2012;44:917–20.

    Article  ADS  Google Scholar 

  71. Zhang Y, Tan Y-W, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201–4.

    Article  ADS  Google Scholar 

  72. Xiong J, Khoo Y, Jia S, et al. Tuning the quantum oscillations of surface Dirac electrons in the topological insulator Bi2Te2Se by liquid gating. Phys Rev B. 2013;88:035128.

    Article  ADS  Google Scholar 

  73. Peng H, Lai K, Kong D, et al. Aharonov-Bohm interference in topological insulator nanoribbons. Nat Mater. 2010;9:225–9.

    ADS  Google Scholar 

  74. Hong SS, Zhang Y, Cha JJ, et al. One-dimensional helical transport in topological insulator nanowire interferometers. Nano Lett. 2014;14:2815–21.

    Article  ADS  Google Scholar 

  75. Chen J, Qin HJ, Yang F, et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys Rev Lett. 2010;105:176602.

    Article  ADS  Google Scholar 

  76. Checkelsky JG, Hor YS, Cava RJ, et al. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys Rev Lett. 2011;106:196801.

    Article  ADS  Google Scholar 

  77. Bardarson JH, Brouwer PW, Moore JE. Aharonov-Bohm oscillations in disordered topological insulator nanowires. Phys Rev Lett. 2010;105:156803.

    Article  ADS  Google Scholar 

  78. Zhang Y, Vishwanath A. Anomalous Aharonov-Bohm conductance oscillations from topological insulator surface states. Phys Rev Lett. 2010;105:206601.

    Article  ADS  Google Scholar 

  79. Checkelsky JG, Ye J, Onose Y, et al. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat Phys. 2012;8:729–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, J. (2016). Introduction. In: Transport Studies of the Electrical, Magnetic and Thermoelectric properties of Topological Insulator Thin Films. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49927-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49927-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49925-2

  • Online ISBN: 978-3-662-49927-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics