Skip to main content

Von Populationen zu Lebensgemeinschaften

  • Chapter
  • First Online:
Ökologie

Zusammenfassung

In den vorigen Kapiteln lag unser Augenmerk häufig auf Populationen einer einzigen Art. Weil wir uns klarmachen wollten, was die Abundanz und Verbreitung einer Art bestimmt, haben wir mehr oder weniger unabhängig voneinander betrachtet, welche Rolle dabei Umweltbedingungen und Ressourcen, Wanderungen, intra- und interspezifische Konkurrenz, mutualistische Beziehungen sowie Prädation und Parasitismus spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliographie

  • Bayliss, P. (1987) Kangaroo dynamics. In: Kangaroos, their Ecology and Management in the Sheep Rangelands of Australia (G. Caughley, N. Shepherd & J. Short, eds), pp. 119–134. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Taylor, I. (1994) Barn Owls. Predator–Prey Relationships and Conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Geange, S.W. & Stier, A.C. (2009) Order of arrival affects competition in two reef fishes. Ecology, 90, 2868–2878

    Article  Google Scholar 

  • Krebs, C.J., Sinclair, A.R.E., Boonstra, R., Boutin, S., Martin, K. & Smith, J.N.M. (1999) Community dynamics of vertebrate herbivores: how can we untangle the web? In: Herbivores: between Plants and Predators (H. Olff, V.K. Brown & R.H. Drent, eds.), pp. 447–473. Blackwell Science, Oxford

    Google Scholar 

  • Choquenot, D. (1998) Testing the relative influence of intrinsic and extrinsic variation in food availability on feral pig populations in Australia’s rangelands. Journal of Animal Ecology, 67, 887–907

    Article  CAS  Google Scholar 

  • White, G. (1789) The Natural History and Antiquities of Selborne. (Reprinted in 1977 as The Natural History of Selborne (G. White and R. Mabey). Penguin, London.)

    Google Scholar 

  • Lawton, J.H. & May, R.M. (1984) The birds of Selborne. Nature, 306, 732–733

    Article  Google Scholar 

  • Singleton, G., Krebs, C.J., Davis, S., Chambers, L. & Brown, P. (2001) Reproductive changes in fluctuating house mouse populations in southeastern Australia. Proceedings of the Royal Society of London, Series B, 268, 1741–1748

    Article  CAS  Google Scholar 

  • Butet, A. & Leroux, A.B.A. (2001) Effects of agricultural development on vole dynamics and conservation of Montagu’s harrier in western French wetlands. Biological Conservation, 100, 289–295

    Article  Google Scholar 

  • Hassell, M.P., Latto, J. & May, R.M. (1989) Seeing the wood for the trees: detecting density dependence from existing life-table studies. Journal of Animal Ecology, 58, 883–892

    Article  Google Scholar 

  • Woiwod, I.P. & Hanski, I. (1992) Patterns of density dependence in moths and aphids. Journal of Animal Ecology, 61, 619–629

    Article  Google Scholar 

  • Davidson, J. & Andrewartha, H.G. (1948) The influence of rainfall, evaporation and atmospheric temperature on fluctuations in the size of a natural population of Thrips imaginis (Thysanoptera). Journal of Animal Ecology, 17, 200–222

    Article  Google Scholar 

  • Coulson, T., Gaillard, J-M. & Festa-Bianchet, M. (2005) Decomposing the variation in population growth into contributions from multiple demographic rates. Journal of Animal Ecology, 74, 789–901

    Article  Google Scholar 

  • Harcourt, D.G. (1971) Population dynamics of Leptinotarsa decemlineata (Say) in eastern Ontario. III. Major population processes. Canadian Entomologist, 103, 1049–1061

    Article  Google Scholar 

  • Berven, K.A. (1995) Population regulation in the wood frog, Rana sylvatica, from three diverse geographic localities. Australian Journal of Ecology, 20, 385–392

    Article  Google Scholar 

  • Symonides, E. (1979) The structure and population dynamics of psammophytes on inland dunes. II. Loose-sod populations. Ekologia Polska, 27, 191–234

    Google Scholar 

  • Gadgil, M. (1971) Dispersal: population consequences and evolution. Ecology, 52, 253–261

    Article  Google Scholar 

  • Bauerfeind, S.S., Theisen, A. & Fischer, K. (2009) Patch occupancy in the endangered butterfly Lycaena helle in a fragmented landscape: effects of habitat quality, patch size and isolation. Journal of Insect Conservation, 13, 271–277

    Article  Google Scholar 

  • Levins, R. (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–240

    Article  Google Scholar 

  • Franzen, M. & Nilsson, M. (2010) Both population size and patch quality affect local extinctions and colonizations. Proceedings of the Royal Society of London, B 277, 79–85

    Article  Google Scholar 

  • Thomas, C.D. & Harrison, S. (1992) Spatial dynamics of a patchily distributed butterfly species. Journal of Applied Ecology, 61, 437–446

    Article  Google Scholar 

  • Moilanen, A., Smith, A.T. & Hanski, I. (1998) Long-term dynamics in a metapopulation of the American pika. American Naturalist, 152, 530–542

    CAS  PubMed  Google Scholar 

  • Thomas, C.D. & Jones, T.M. (1993) Partial recovery of a skipper butterfly (Hesperia comma) from population refuges: lessons for conservation in a fragmented landscape. Journal of Animal Ecology, 62, 472–481

    Article  Google Scholar 

  • Yodzis, P. (1986) Competiton, mortality and community structure. In: Community Ecology (J. Diamond & T.J. Case, eds.), pp. 480–491. Harper & Row, New York

    Google Scholar 

  • Sale, P.F. & Douglas, W.A. (1984) Temporal variability in the community structure of fish on coral patch reefs and the relation of community structure to reef structure. Ecology, 65, 409–422

    Article  Google Scholar 

  • Kennedy, P.G., Peay, K.G. & Bruns, T.D. (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology, 90, 2098–2107

    Article  Google Scholar 

  • Lichter, J. (2000) Colonization constraints during primary succession on coastal Lake Michigan sand dunes. Journal of Ecology, 88, 825–839

    Article  Google Scholar 

  • Dölle, M., Bernhardt-Römmermann, M., Parth, A. & Schmidt, W. (2008) Changes in life history trait composition during undisturbed old-field succession. Flora, 203, 508–522

    Article  Google Scholar 

  • Navas, M.-L., Roumet, C., Bellmann, A., Laurent, G. & Garnier, E. (2010) Suites of plant traits in species from different stages of a Mediterranean secondary succession. Plant Biology, 12, 183–196

    Article  CAS  Google Scholar 

  • Sieman, E., Haarstad, J. & Tilman, D. (1999) Dynamics of plant and arthropod diversity during old field succession. Ecography, 22, 406–414

    Article  Google Scholar 

  • Courchamp, F., Clutton-Brock, T. & Grenfell, B. (1999) Inverse density dependence and the Allee effect. Trends in Ecology and Evolution, 14, 405–410

    Article  CAS  Google Scholar 

  • Spiller, D.A. & Schoener, T.W. (1990) A terrestrial field experiment showing the impact of eliminating predators on foliage damage. Nature, 347, 469–472

    Article  Google Scholar 

  • Letourneau, D.K. & Dyer, L.A. (1998a) Density patterns of Piper ant-plants and associated arthropods: top-predator trophic cascades in a terrestrial system? Biotropica, 30, 162–169

    Article  Google Scholar 

  • Pace, M.L., Cole, J.J., Carpenter, S.R. & Kitchell, J.F. (1999) Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 14, 483–488

    Article  CAS  Google Scholar 

  • Frank, K.T., Petrie, B., Choi, J.S. & Leggett, W.C. (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science, 308, 1621–1623

    Article  CAS  Google Scholar 

  • Carpenter, S.R., Christensen, D.L., Cole, J.J., Kottingham, K.L., He, X., Hodgson, J.R., Hitchell, J.F., Knight, S.E., Pace, M.L., Post, D.M., Schindler, D.E. & Voichick, N. (1995) Biological control of eutrophication in lakes. Environmental Science and Technology, 29, 784–786

    Article  CAS  Google Scholar 

  • Kersch-Becker, M.F. & Lewinsohn, T.M. (2012) Bottom-up multitrophic effects in resprouting plants. Ecology, 93, 9–16

    Article  Google Scholar 

  • Hairston, N.G., Smith, F.E. & Slobodkin, L.B. (1960) Community structure, population control, and competition. American Naturalist, 44, 421–425

    Article  Google Scholar 

  • Murdoch, W.W. (1966) Community structure, population control and competition—a critique. American Naturalist, 100, 219–226

    Article  Google Scholar 

  • Borer, E.T., Halpern, B.S. & Seabloom, E.W. (2006) Asymmetry in community regulation: effects of predators and productivity. Ecology, 87, 2813–2820

    Article  Google Scholar 

  • Power, M.E., Tilman, D., Estes, J.A. et al. (1996) Challenges in the quest for keystones. Bioscience, 46, 609–620

    Article  Google Scholar 

  • Kerbes, R.H., Kotanen, P.M. & Jefferies, R.L. (1990) Destruction of wetland habitats by lesser snow geese: a keystone species on the west coast of Hudson Bay. Journal of Applied Ecology, 27, 242–258

    Article  Google Scholar 

  • MacArthur, R.H. (1955) Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533–536

    Article  Google Scholar 

  • Elton, C.S. (1958) The Ecology of Invasions by Animals and Plants. Methuen, London

    Book  Google Scholar 

  • May, R.M. (1981) Patterns in multi-species communities. In: Theoretical Ecology: Principles and Applications, 2nd edn (R.M. May, ed.), pp. 197–227. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tilman, D. (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80, 1455–1474

    Google Scholar 

  • Cottingham, K.L., Brown, B.L. & Lennon, J.T. (2001) Biodiversity may regulate the temporal variability of ecological systems. Ecology Letters, 4, 72–85

    Article  Google Scholar 

  • Stouffer, D.B. & Bascompte, J. (2011) Compartmentalization increases food web persistence. Proceedings of the National Academy of Sciences of the USA, 108, 3648–3652

    Article  CAS  Google Scholar 

  • Tilman, D. (1996) Biodiversity: population versus ecosystem stability. Ecology, 77, 350–363

    Article  Google Scholar 

  • McGrady-Steed, J., Harris, P.M. & Morin, P.J. (1997) Biodiversity regulates ecosystem predictability. Nature, 390, 162–165

    Article  CAS  Google Scholar 

  • Wardle, D.A., Bonner, K.I. & Barker, G.M. (2000) Stability of ecosystem properties in response to above-ground functional group richness and composition. Oikos, 89, 11–23

    Article  Google Scholar 

  • Rezende, E.L., Albert, E.M., Fortuna, M.A. & Bascompte, J. (2009) Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecology Letters, 12, 779–788

    Article  Google Scholar 

  • Townsend, C.R., Thompson, R.M., McIntosh, A.R. et al. (1998) Disturbance, resource supply, and food-web architecture in streams. Ecology Letters, 1, 200–209

    Article  Google Scholar 

  • Karl, B.J. & Best, H.A. (1982) Feral cats on Stewart Island: their foods, and their effects on kakapo. New Zealand Journal of Zoology, 9, 287–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Begon, M., Howarth, R.W., Townsend, C.R. (2017). Von Populationen zu Lebensgemeinschaften. In: Ökologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49906-1_9

Download citation

Publish with us

Policies and ethics