Skip to main content

Globale biogeochemische Kreisläufe und ihre Veränderung durch den Menschen

  • Chapter
  • First Online:
Ökologie

Zusammenfassung

In diesem Kapitel liefern wir eine formale Definition für den Begriff Biogeochemie und zeigen auf, wie einige besonders bedeutende biogeochemische Kreisläufe durch anthropogene Einflüsse in globalem Maßstab verändert wurden. Laut Howarth (1984) befasst sich die Biogeochemie (engl. biogeochemisty) als Wissenschaft mit dem Einfluss der Biota auf die chemischen Umweltbedingungen wie auch mit dem Einfluss der geochemischen Verhältnisse auf die Struktur und Funktion von Ökosystemen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliographie

  • Rockström, J. et al. (2009) A safe operating space for humanity. Nature, 461, 472–475

    Article  Google Scholar 

  • Schlesinger, W.H. (1997) Biogeochemistry: An Analysis of Global Change, 2nd edn. Academic Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change, (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K

    Book  Google Scholar 

  • Intergovernmental Panel on Climate Change, (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • Le Quéré, C. et. al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–836

    Article  Google Scholar 

  • Canadell, J.G., Le Quéré, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillet, N.P., Houghton, R.A. & Marland. G. (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104, 18866–18870

    Article  CAS  Google Scholar 

  • Friedlingstein, P. et al. (2006) Climate-carbon cycle feedback analysis: Results from the C4 MIP model intercomparison. Journal of Climate, 19, 3337–3353

    Article  Google Scholar 

  • Jacobson, M.A. (2005) Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry. Journal of Geophysical Research, 110, D07302

    Google Scholar 

  • Feely, R.A., Doney, S.C. & Cooley S.R. (2009) Ocean acidification: present conditions and future changes in a high CO2 world. Oceanography, 22, 36–47

    Article  Google Scholar 

  • Jacobson, M.Z. & Delucchi, M.A. (2011) Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 39, 1154–1169

    Article  CAS  Google Scholar 

  • Jacobson, M.Z. & Delucchi, M.A. (2009) A path to sustainable energy by 2030. Scientific American. November 2009, 58–65

    Article  Google Scholar 

  • Howarth, R.W., Santoro, R. & Ingraffea, A. (2011) Methane and the greenhouse gas footprint of natural gas from shale formations. Climatic Change Letters, 106, 679–690

    Article  CAS  Google Scholar 

  • Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J., Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E.L., Houweling, S., Josse, B., Fraser, P.J., Krummel, P.B., Lamarque, J.-F., Langenfelds, R.L., Le Quéré, C., Naik, V., O’Doherty, S., Palmer, P.I., Pison, I., Plummer, D., Poulter, B., Prinn, R.G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T., Simpson, I.J., Spahni, R., Steele, L.P., Strode, S.A., Sudo, K., Szopa, S., van der Werf, G.R., Voulgarakis, A., van Weele, M., Weiss, R.F., Williams, J.E. and Zeng, G. (2013) Three decades of global methane sources and sinks. Nature Geoscience, 6, 813–823

    Article  CAS  Google Scholar 

  • Etiope, G., Lassey, K.R., Klusman, R.W. & Boschi, E. (2008) Reappraisal of the fossil methane budget and related emission from geologic sources, Geophysical Research Letters, 35, L09307

    Article  Google Scholar 

  • Jamali, H., Livesley, S.J., Dawes, T.Z. et al. (2011) Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behaviour. Oecologia, 167, 525–534

    Article  Google Scholar 

  • Poffenbarger, H.J., Needelman, B.A. & Megonical, J.P. (2011) Salinity influences on methane emissions from tidal marshes. Wetlands, 31, 831–842

    Article  Google Scholar 

  • Lassey, K. R., Lowe, D.C. & Smith, A.M. (2007) The atmospheric cycling of radiomethane and the ‘‘fossil fraction’’ of the methane source, Atmospheric Chemistry and Physics, 7, 2141–2149

    Article  CAS  Google Scholar 

  • Shindell, D., Kuylenstierna, J.C.I., Vignati, E., van Dingenen, R., Armann, M., Klimont, Z., Anenberg, S.C., Muller, N., Janssents-Maenhout, G., Rase, F., Schwartsz, J., Faluvegi, G., Pozzoli, L, Kupiainen, K., Hoglund-Isaksson, L, Emberson, L, Streets, D., Ramanathan, V., Hicks, K., Kim Oanh, N.T., Milly, G., Wiklliams, M., Demkine, V. & Fowler, D. (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335, 183–189

    Article  CAS  Google Scholar 

  • Zimov, S.A., Schuur, E.A.G. & Chapin, F.S. (2006) Permafrost and the global carbon budget. Science, 312, 1612–1613

    Article  CAS  Google Scholar 

  • Hansen, J., Sato, M., Kharecha, P., Russell, G., Lea, D.W. & Siddall, M. (2007) Climate change and trace gases. Philo­sophical Transactions of the Royal Society of London, Series A, 365, 1925–1954.

    Article  CAS  Google Scholar 

  • Howarth, R.W. & Ingraffea, A. (2011) Should fracking stop? Yes, it is too high risk. Nature, 477, 271–273

    Article  CAS  Google Scholar 

  • Caulton, D.R., Shepson, P. B., Santoro, R.L., Sparks, J.P., Howarth, R.W., Ingraffea, A., Cambaliza, M.O., Sweeney, C., Karion, A., Davis, K.J., Lauvaux, T., Stirm, B., Belmecheri, S. & Sarmiento D. (2014) Quantifying methane emissions from an area of shale gas development in Pennsylvania. Proceedings of the National Academy of Sciences, 111, 6237–6242

    Article  CAS  Google Scholar 

  • Vitousek, P.M., Mooney, H.A., Lubchenco, J. & Melillo, J.M. (1997) Human domination of Earth’s ecosystems. Science, 277, 494–499

    Article  CAS  Google Scholar 

  • Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C., Green, P.A., Holland, E., Karl, D.M., Michaels, A., Porter, J.H., Townsend A. & Vorosmarty, C. (2004) Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153–226

    Article  CAS  Google Scholar 

  • Falkowski, P.G. (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the oceans. Nature, 387, 272–275

    Article  CAS  Google Scholar 

  • Howarth, R.W., Ramakrishna, K., Choi, E., Elmgren, R., Martinelli, L., Mendoza, A., Moomaw, W., Palm, C., Boy, R., Scholes, M. & Zhu Zhao-Liang (2005) Chapter 9: Nutrient management, responses assessment. In Ecosystems and Human Well-being, Volume 3, Policy Responses, the Millennium Ecosystem Assessment. Island Press, Washington, DC

    Google Scholar 

  • Townsend, A.R., Howarth, R., Bazzaz, F.A., Booth, M.S., Cleveland, C.C., Collinge, S.K., Dobson, A.P., Epstein, P.R., Holland, E.A., Keeney, D.R., Mallin, M.A., Rogers, C.A., Wayne P. & Wolfe, A.H. (2003) Human health effects of a changing global nitrogen cycle. Frontiers in Ecology & Environment, 1, 240–246

    Article  Google Scholar 

  • Johnson, P.T.J., Townsend, A.R., Cleveland, C.C., Glibert, P.M., Howarth, R.W., McKenzie, V.J., Rejmankova, E., & Ward, M.H. (2010) Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecological Applications, 20, 16–29

    Article  Google Scholar 

  • Townsend, A. & Howarth, R.W. (2010) Human acceleration of the global nitrogen cycle. Scientific American, 302, 32–39

    Article  Google Scholar 

  • Hong, B., Swaney, D. & Howarth, R.W. (2011) A toolbox for calculating net anthropogenic nitrogen inputs (NANI). Environmental Modeling and Software, 26, 623–33

    Article  Google Scholar 

  • Howarth, R.W., Swaney, D., Billen, G., Garnier, J., Hong, B., Humborg, C., Johnes, P., Morth C. & Marino, R. (2012) Nitrogen fluxes from large watershed to coastal ecosystems controlled by net anthropogenic nitrogen inputs and climate. Frontiers in Ecology & Environment, 10, 37–43

    Article  Google Scholar 

  • Howarth, R.W., Boyer, E.W., Pabich, W.J. & Galloway, J.N. (2002) Nitrogen use in the United States from 1961–200 and potential future trends. Ambio, 31, 88–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Begon, M., Howarth, R.W., Townsend, C.R. (2017). Globale biogeochemische Kreisläufe und ihre Veränderung durch den Menschen. In: Ökologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49906-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49906-1_12

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49905-4

  • Online ISBN: 978-3-662-49906-1

  • eBook Packages: Life Science and Basic Disciplines (German Language)

Publish with us

Policies and ethics