Skip to main content

Climate and the Amazonian Carbon Balance

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 227))

Abstract

Amazonia is an important part of the global climate system and its rainforests host a large ‘labile’ carbon pool which may possibly feedback on climate on rather short timescales. Since the 1980s, the mean temperature in Amazonia has steadily increased and the hydrological cycle has intensified with the number of strong droughts, e.g. in 2005 and 2010, and severe floods increasing and, on average, wet season precipitation rising. The main determinants of the carbon balance of the vegetation have been a multi-decadal natural forest carbon sink and carbon loss caused by deforestation, and these two processes compensate each other approximately. Deforestation in the Brazilian Amazon, covering the largest fraction of the Basin, has encouragingly decreased over the last decade. Most recent droughts (2005, 2010) have, however, indicated a weakening of the forest sink, possibly indicating a longer term change as a result of ongoing changes in climate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002. doi:10.1126/science.1070656

    Article  CAS  PubMed  Google Scholar 

  • Achard F, Eva HD, Mayaux P, Stibig HJ, Belward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochem Cycles 18:GB2008. doi:10.1029/2003GB002142

    Article  CAS  Google Scholar 

  • Barbosa RI, Fearnside PM (1996) Pasture burning in Amazonia: dynamics of residual biomass and the storage and release of aboveground carbon. J Geophys Res 101:25847–25857

    Article  CAS  Google Scholar 

  • Callède J, Guyot JL, Ronchail J, L’Hôte Y, Niel H, De Oliveira E (2004) Evolution du débit de l’Amazone à Óbidos de 1903 à 1999. Hydrol Sci J 49:85–97

    Article  Google Scholar 

  • Chambers JQ, Negron-Juarez RI, Magnabosco Marra D, Di Vittorio A, Tews J, Roberts D, Ribeiro GHPM, Trumbore SE, Higuchi N (2013) The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc Natl Acad Sci USA 110:3949–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou WW, Wofsy CS, Harriss RC, Lin JC, Gerbig C, Sachse GW (2002) Net fluxes of CO2 in Amazonia derived from aircraft observations. J Geophys Res 107(D22):4614. doi:10.1029/2001JD001295

    Article  CAS  Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Junquas C, Vauchel P, Lavado WS (2011) Climate variability and extreme drought in the upper Solimões River (Western Amazon basin): understanding the exceptional 2010 drought. Geophys Res Lett 38:L13406

    Article  Google Scholar 

  • Espírito-Santo FDB, Gloor M, Keller M, Malhi Y, Saatchi S, Nelson B, Oliveira Junior RC, Pereira C, Lloyd J, Frolking S, Palace M, Shimabukuro YE, Duarte V, Monteagudo Mendoza A, López-González G, Baker TR, Feldpausch TR, Brienen RJW, Asner GP, Boyd DS, Phillips OL (2014) Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat Commun 5, 3434. doi:10.1038/ncomms4434

    PubMed  PubMed Central  Google Scholar 

  • Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19:680–688

    Article  Google Scholar 

  • Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Phillips OL et al (2012) Tree height integrated into pan-tropical forest biomass estimates. Biogeosciences 9:3381–3403

    Article  Google Scholar 

  • Filizola N, Latrubesse EM, Fraizy P, Souza R, Guimarães V, Guyot JL (2014) Was the 2009 flood the most hazardous or the largest ever recorded in the Amazon? Geomorphology 215:99–105

    Article  Google Scholar 

  • Fu R, Zhu B, Dickinson RE (1998) How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon? J Climate 12:1306–1321

    Article  Google Scholar 

  • Fu R, Yin L, Lib W, Arias PA, Dickinson RE, Huanga L, Chakraborty S, Fernandes K, Liebmann B, Fisher R, Myneni RB (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc Natl Acad Sci USA 110:18110–18115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatti LV, Miller JB, D'Amelio MTS, Martinewski A, Basso LS, Gloor M, Wofsy S, Tans P (2010) Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009. Tellus Ser B 62:581–594. doi:10.1111/j.1600-0889.2010.00484.x

    Article  CAS  Google Scholar 

  • Gatti LV, Gloor M, Miller J, Doughty CE, Malhi Y, Domingues LG, Basso LS, Martinewski A, Correia CSC, Borges VF, Freitas S, Braz R, Anderson LO, Rocha H, Grace J, Phillips OL, Lloyd J (2014) Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506:76–80

    Article  CAS  PubMed  Google Scholar 

  • Gloor M, Gatti LV, Brienen R, Feldpausch TR, Phillips OL, Miller J, Ometto JP, Rocha H, Baker T, de Jong B, Houghton R, Malhi Y, Aragão LEOC, Guyot JL, Zhao K, Jackson R, Peylin P, Sitch S, Poulter B, Lomas M, Zaehle S, Huntingford C, Lloyd J (2012) The carbon balance of South America: status, decadal trends and main determinants. Biogeosciences 9:5407–5430. doi:10.5194/bg-9-5407-2012

    Article  CAS  Google Scholar 

  • Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J, Guyot JL, Espinoza JC, Lloyd J, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 2013(40):1–5. doi:10.1002/grl.50377

    Google Scholar 

  • Grainger A (2008) Difficulties in tracking the long-term global trend in tropical forest area. Proc Natl Acad Sci USA 104:818

    Article  Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, Pittman KW, Arunarwati B, Stolle F, Steininger MK, Carroll M, DiMiceli C (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multi-temporal and multi-resolution remotely sensed data. Proc Natl Acad Sci USA 105:9439–9444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr 53:235–262

    Article  CAS  Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D et al (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273

    Article  CAS  Google Scholar 

  • Jobaggy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Körner C (2003) Slow in, rapid out—carbon flux studies and Kyoto targets. Science 300:1242–1243

    Article  PubMed  Google Scholar 

  • Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, Aguiar APD, Bustamante MMC, Cardoso MF, Costa MH, Joly CA, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG (2014) Pervasive transition of the Brazilian land-use system. Nat Clim Change 4:27–35

    Article  Google Scholar 

  • Lloyd J, Farquhar GD (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. 1. General principles and forest ecosystems. Funct Ecol 10:4–32

    Article  Google Scholar 

  • Malhi Y (2010) The carbon balance of tropical forest regions, 1990–2005. Curr Opin Environ Sustain 2:237–244

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38. doi:10.1029/2011GL047436

    Google Scholar 

  • Martinelli L, Victoria RL, Sternberg LSL, Moreira MZ (1996) Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin. J Hydrol 183:191–204

    Article  CAS  Google Scholar 

  • Melack JM, Forsberg B (2001) Biogeochemistry of Amazon floodplain lakes and associated wetlands. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon Basin and its role in a changing world. Oxford University Press, New York, NY, pp 235–276

    Google Scholar 

  • Melack JM, Novo EMLM, Forsberg BR, Piedade MTF, Maurice L (2009) Floodplain ecosystem processes. In: Keller M, Bustamante M, Gash J, Dias PS (eds) Amazonia and global change, 186, Geophysical monograph series. American Geophysical Union, Washington, DC, pp 525–542

    Chapter  Google Scholar 

  • Murty D, Kirschbaum MU, McMurtrie RE, McGilvray H (2002) Does the conversion of forest agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8:105–123

    Article  Google Scholar 

  • Nepstad DC, Verissimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508

    Article  CAS  Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV, Vasquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  CAS  PubMed  Google Scholar 

  • Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347

    Article  CAS  PubMed  Google Scholar 

  • Poeschl U et al (2010) Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329:1513–1516

    Article  CAS  Google Scholar 

  • PRODES (2013) Brazilian government deforestation estimates based on remote sensing. http://www.obt.inpe.br/prodes/prodes_1988_2013.htm

  • Richey JE, Hedges JI, Devol AH, Quay P, Victoria RL, Martinelly L, Forsberg BR (1990) Biogeochemistry of carbon in the Amazon River. Limnol Oceanogr 35:352–371

    Article  CAS  Google Scholar 

  • Salati E, Dall’Olio A, Matsui E, Gat JR (1979) Recycling of water in the Amazon basin: an isotopic study. Water Resour Res 15:1250–1258

    Article  CAS  Google Scholar 

  • Schroth G, D’Angelo SA, Geraldes Teixeira W, Haag D, Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For Ecol Manage 163:131–150

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161

    Article  CAS  Google Scholar 

  • Silva Dias MAF, Rutledge S, Kabat P, Silva Dias PL, Nobre C, Fisch G, Dolman AJ, Zipser E, Garstang M, Manzi AO, Fuentes JD, Rocha HR, Marengo J, Plana-Fattori A, Sa LDÁ, Alvala ŔCS, Andreae MO, Artaxo P, Gielow R, Gatti L (2002) Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon Region. J Geophys Res 107(D20):8072. doi:10.1029/2001JD000335

    Article  Google Scholar 

  • Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–285

    Article  CAS  PubMed  Google Scholar 

  • Van der Ent RJ, Savenije HH, Schaefli B, Steele‐Dunne SS (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:W09525. doi:10.1029/2010WR009127

    Google Scholar 

  • Werth D, Avissar R (2002) The local and global effects of Amazon deforestation. J Geophys Res 107(D20):8087. doi:10.1029/2001JD000717

    Article  Google Scholar 

Download references

Acknowledgements

I thank John Grace, Laszlo Nagy, Jean Ometto, and an anonymous reviewer who have helped improve this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Gloor .

Editor information

Editors and Affiliations

Appendix: Formalisation of Book Keeping Approach to Estimate Carbon Fluxes Caused by Deforestation Based on Data of Area Deforested and Simple Models of Woody Debris Decomposition and Vegetation Re-establishment

Appendix: Formalisation of Book Keeping Approach to Estimate Carbon Fluxes Caused by Deforestation Based on Data of Area Deforested and Simple Models of Woody Debris Decomposition and Vegetation Re-establishment

1.1 Carbon Release to the Atmosphere After Deforestation

Starting from Eq. (6.2) describing carbon release of woody debris after deforestation and using an annual time step Δt = 1 we obtain

$$ C\left({t}_{\mathrm{def}}+\Delta t,{t}_{\mathrm{def}}\right)=\left(1-\lambda \right)C\left(t,{t}_{\mathrm{def}}\right),C\left(t,{t}_{\mathrm{def}}\right)={\left(1-\lambda \right)}^{t-{t}_{\mathrm{def}}}C\left({t}_{\mathrm{def}},{t}_{\mathrm{def}}\right) $$
(6.9)

where C(t def,t def) is the originally left over woody debris carbon not immediately released at the time t def of deforestation and C(t,t def) the remaining not yet decomposed woody debris carbon. The flux to the atmosphere at time t caused by decomposition of leftover debris caused by deforestation at time t def in the past is

$$ \begin{array}{l}{F}_{\mathrm{ld}\to \mathrm{at}}^{\mathrm{res}}\left(t,{t}_{\mathrm{def}}\right)=-\Big(\left(C\left(t+\Delta t,{t}_{\mathrm{def}}\right)-C\left(t,{t}_{\mathrm{def}}\right)\right)=\dots =\\ {}={\lambda}_{\mathrm{res}}{\left(1-{\lambda}_{\mathrm{res}}\right)}^{t-{t}_{\mathrm{def}}-1}C\left({t}_{\mathrm{def}},{t}_{\mathrm{def}}\right).\end{array} $$
(6.10)

The total flux to the atmosphere at time t due to deforestation in the past is then given by the sum of all contributions from the beginning of deforestation around 1970 until today or

$$ \begin{array}{ll}{F}_{\mathrm{ld}\to \mathrm{at}}^{\mathrm{res},\mathrm{tot}}(t)=& \underset{\begin{array}{l}\mathrm{carbon}\;\mathrm{immediately}\;\mathrm{released}\;\mathrm{during}\\ {}\mathrm{deforestation}\;\mathrm{in}\;\mathrm{y}\mathrm{ear}\;t\end{array}}{\underbrace{\alpha \cdot {r}_{C:M}\cdot {B}_{\mathrm{res}}\cdot \Delta A(t)}}\hfill \\ {}& +\underset{\mathrm{carbon}\;\mathrm{released}\;\mathrm{in}\;\mathrm{y}\mathrm{ear}\;t\;\mathrm{b}\mathrm{y}\;\mathrm{decomposing}\;\mathrm{leftover}\;\mathrm{debris}\;\mathrm{from}\;\mathrm{deforestation}\;\mathrm{in}\;\mathrm{previous}\;\mathrm{y}\mathrm{ear}\mathrm{s}}{\underbrace{\lambda_{\mathrm{res}}{\displaystyle \sum_{t_{\mathrm{def}}=1970}^t{\left(1-{\lambda}_{\mathrm{res}}\right)}^{t-{t}_{\mathrm{def}}}}\left\{\left(1-\alpha \right)\cdot {r}_{C:M}\cdot {B}_{\mathrm{trees}}+{f}_{\mathrm{rels}}\cdot {C}_{\mathrm{soil}}\right\}\cdot \Delta A\left({t}_{\mathrm{def}}\right)}}\hfill \end{array} $$
(6.11)

with symbols explained in the main text and/or Table 6.1.

1.2 Carbon Uptake from the Atmosphere by Re-establishing land Vegetation

For the assumed time course of carbon uptake by regrowth after deforestation in year t def (Eq. 6.3) the flux from atmosphere to land vegetation in year t is

$$ \begin{array}{l}{F}_{\mathrm{at}\to \mathrm{l}\mathrm{d}}^{\mathrm{rgrwth}}\left(t,{t}_{\mathrm{def}}\right)=C\left(t+\Delta t,{t}_{\mathrm{def}}\right)-C\left(t,{t}_{\mathrm{def}}\right)=\dots =\\ {}=\left(1-{e}^{-{\lambda}_{\mathrm{rgrwth}}\cdot \varDelta t}\right)\cdot {e}^{-{\lambda}_{\mathrm{rgrwth}}\left(t-{t}_{\mathrm{def}}\right)}\cdot {C}_{\mathrm{steady}}\end{array} $$
(6.12)

with Δt = 1 (in units of years, the time step we are using for summing contributions because satellite data of deforested area from Brazil are annual). The total flux of carbon at time t from the atmosphere to land due to regrowth in the wake of all deforestation events in the past is then

$$ {F}_{\mathrm{at}\to \mathrm{l}\mathrm{d}}^{\mathrm{rgrwth},\mathrm{tot}}(t)={r}_{C:M}\cdot {B}_{\mathrm{veg}}\cdot \left(1-{e}^{-{\lambda}_{\mathrm{rgrwth}}\cdot \Delta t}\right)\cdot {\displaystyle \sum_{t_{\mathrm{def}}=1970}^{t-1}{e}^{-{\lambda}_{\mathrm{rgrwth}}\cdot \left(t-{t}_{\mathrm{def}}\right)}\Delta A\left({t}_{\mathrm{def}}\right)}. $$
(6.13)

B veg is the mass per area of the new vegetation type once fully established and as above Δt = 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gloor, E. (2016). Climate and the Amazonian Carbon Balance. In: Nagy, L., Forsberg, B., Artaxo, P. (eds) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49902-3_6

Download citation

Publish with us

Policies and ethics