Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 227))

Abstract

The Amazon basin is the planet’s largest and most intense land-based centre of precipitation. This convective system is driven by high net surface radiation, which is dissipated via fluxes of latent heat and sensible heat. Over the long term (1 year or greater), incoming precipitation over the basin is balanced by evaporative fluxes of water to the atmosphere and discharge, which returns excess water to the oceans. The temporal variability of this cycle is largely controlled by oscillations of tropical Pacific and North Atlantic sea surface temperatures, while synergies between climate and forest structure and functioning control much of the observed spatial variability. Field observations and numerical models indicate that large-scale deforestation has decreased net surface radiation and evapotranspiration, increasing sensible heat flux, water yield, and stream discharge in many locations, particularly in the agricultural frontier of southeastern Amazonia. In the future, increasing atmospheric greenhouse gases are expected to increase temperatures, drought frequency, and drought intensity in the Amazon, causing further changes to the cycling of energy and water in the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade NLR, Aguiar RG, Sanches L, Freitas-Alves ECR, Nogueira JS (2009) Net radiation partition in Amazonian forest and transitional Amazonia-Cerrado forest areas. Rev Bras Meteorol 24(3):346–355. doi:10.1590/S0102-77862009000300008

    Article  Google Scholar 

  • Aragão LE, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34(7):L07701. doi:10.1029/2006GL028946

    Article  Google Scholar 

  • Bagley JE, Desai AR, Harding KJ, Snyder PK, Foley JA (2014) Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J Climate 27:345–361

    Article  Google Scholar 

  • Berbet MLC, Costa MH (2003) Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change. J Climate 16:2099–2104

    Article  Google Scholar 

  • Betts RA (2004) Global vegetation and climate: self-beneficial effects, climate forcings and climate feedbacks. J Phys IV 121:37–60

    CAS  Google Scholar 

  • Bisht G, Bras RL (2010) Estimation of net radiation from the moderate resolution imaging spectroradiometer over the Continental United States. IEEE Trans Geosci Remote Sens 49(6):2448–2462. doi:10.1109/TGRS.2010.2096227

    Article  Google Scholar 

  • Bonan GB (2002) Ecological climatology: concepts and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Bonan GB, DeFries RS, Coe MT, Ojima DS (2004) Land use and climate. In: Gutman G (ed) Land change science. Kluwer Academic Publishers, Dordrecht, pp 301–314

    Google Scholar 

  • Botta A, Ramankutty N, Foley JA (2002) Long-term variations of climate and carbon fluxes over the Amazon basin. Geophys Res Lett 29(9). doi:10.1029/2001GL013607

    Google Scholar 

  • Bounoua L, DeFries R, Collatz GJ, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Clim Change 52:29–64

    Article  Google Scholar 

  • Bruijnzeel L (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228

    Article  Google Scholar 

  • Butt N, Oliveira PA, Costa MH (2011) Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J Geophys Res 116(D11120):8. doi:10.1029/2010JD015174

    Google Scholar 

  • Chaves J, Neill C, Germer S, Neto SG, Krusche A, Elsenbeer H (2008) Land management impacts on runoff sources in small Amazon watersheds. Hydrol Process 22(22):1766–1775

    Article  Google Scholar 

  • Coe MT, Costa MH, Howard EA (2007) Simulating the surface waters of the Amazon River Basin: impacts of new river geomorphic and dynamic flow parameterizations. Hydrol Process 21. doi:10.1002/hyp.6850

    Google Scholar 

  • Coe MT, Costa MH, Soares-Filho BS (2009) The Influence of historical and potential future deforestation on the stream flow of the Amazon River—land surface processes and atmospheric feedbacks. J Hydrol 369:165–174. doi:10.1016/j.jhydrol.2009.1002.1043

    Article  Google Scholar 

  • Coe MT, Latrubesse EM, Ferreira ME, Amsler ML (2011) The Effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105:119–131. doi:10.1007/s10533-011-9582-2

    Article  Google Scholar 

  • Coe M, Marthews TR, Costa MH, Galbraith D, Greenglass N, Acioli H, Levine N, Malhi Y, Moorcroft PR, Nobre Muza M, Powell T, Saleska SR, Solorzano LA, Wang J (2013) Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philos Trans R Soc B 368:20120155. doi:10.1098/rstb.2012.0155

    Article  Google Scholar 

  • Costa MH, Foley JA (1997) Water balance of the Amazon Basin. J Geophys Res 102(D20):23973–23989

    Article  CAS  Google Scholar 

  • Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Climate 13(1):18–34

    Article  Google Scholar 

  • Costa MH, Pires GF (2009) Effecs of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int J Climatol 30:1970–1979. doi:10.1002/joc.2048

    Article  Google Scholar 

  • Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol 283:206–217

    Article  Google Scholar 

  • Costa MH, Yanagi SNM, Souza P, Ribeiro A, Rocha EJP (2007) Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys Res Lett 34:L07706. doi:10.1029/2007GL029271

    Google Scholar 

  • Costa MH, Biajoli MC, Sanches L, Malhado A, Hutyra LR, da Rocha HR, Aguiar RG, de Araújo AC (2010) Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: are the wet and seasonally dry rain forests any different? J Geophys Res Biogeosci 115:2005–2012

    Article  CAS  Google Scholar 

  • Culf AD, Fisch G, Hodnett MG (1995) The albedo of Amazonian forest and ranchland. J Climate 8:1544–1554. doi:10.1175/1520-0442(1995)008<1544:TAOAFA>2.0.CO;2

    Article  Google Scholar 

  • D’Almeida C, Vorosmarty CJ, Marengo JA, Hurtt GC, Dingman SL, Keim BD (2006) A water balance model to study the hydrological response to different scenarios of deforestation in Amazonia. J Hydrol 331(1–2):125–136

    Article  Google Scholar 

  • D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007) The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int J Climatol 27(5):633–647

    Article  Google Scholar 

  • da Rocha HR, Goulden ML, Miller SD (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:22–32

    Article  Google Scholar 

  • da Rocha HR, Manzi AO, Cabral OM, Miller SD, Goulden ML, Saleska SR, Coupe NR (2009) Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J Geophys Res 114(G00B12):1–8

    Google Scholar 

  • Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM Jr, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328. doi:10.1038/nature10717

    Article  CAS  PubMed  Google Scholar 

  • Delire C, Behling P, Coe MT, Foley JA, Jacob R, Kutzbach J, Liu Z, Vavrus S (2001) Simulated response of the atmosphere–ocean system to deforestation in the Indonesian Archipelago. Geophys Res Lett 28(10):2081–2084

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modelling tropical deforestation: a study of GCM land-surface parametrizations. Q J Roy Meteorol Soc 114:439–462

    Article  Google Scholar 

  • DiMiceli CM, Carroll ML, Sohlberg RA, Huang C, Hansen MC, Townshend JGR (2011) Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010, collection 5 percent tree cover. University of Maryland, College Park, MD

    Google Scholar 

  • Espinoza JC, Guyot JL, Ronchail J, Cocheneau G, Filizola N, Fraizy P, Labat D, de Oliveira E, Ordoñez JJ, Vauchel P (2009) Contrasting regional discharge evolutions in the Amazon basin (1974–2004). J Hydrol 375:297–311

    Article  Google Scholar 

  • Fisher JB, Malhi Y, Bonal D, Da Rocha HR, De AraÚJo AC, Gamo M, Goulden ML, Hirano T, Huete AR, Kondo H, Kumagai TO, Loescher HW, Miller S, Nobre AD, Nouvellon Y, Oberbauer SF, Panuthai S, Roupsard O, Saleska S, Tanaka K, Tanaka N, Tu KP, Von Randow C (2009) The land atmosphere water flux in the tropics. Glob Chang Biol 15(11):2694–2714. doi:10.1111/j.1365-2486.2008.01813.x

    Article  Google Scholar 

  • Foley JA, Botta A, Coe MT, Costa MH (2002) El Nino–southern oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochem Cycles 16(4):1132

    Article  CAS  Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci USA 107:16732–16737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloor M, Brienen R, Galbraith D, Feldpausch T, Schöngart J, Guyot JL, Espinoza J, Lloyd J, Phillips O (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733

    Article  Google Scholar 

  • Hasler N, Avissar R (2007) What controls evapotranspiration in the Amazon basin? J Hydrometeorol 8(3):380–395

    Article  Google Scholar 

  • Hayhoe S, Neill C, McHorney R, Porder S, Lefebvre P, Coe MT, Elsenbeer H, Krusche A (2011) Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Glob Chang Biol 17:1821–1833. doi:10.1111/j.1365-2486.2011.02392.x

    Article  Google Scholar 

  • Holtum JAM, Winter K (2010) Elevated [CO2] and forest vegetation: more a water issue than a carbon issue? Funct Plant Biol 37:694–702

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8(1):38–55

    Article  Google Scholar 

  • Huntingford C, Fisher RA, Mercado L, Booth BB, Sitch S, Harris PP, Cox PM, Jones CD, Betts RA, Malhi Y, Harris GR, Collins M, Moorcroft P (2008) Towards quantifying uncertainty in predictions of Amazon “dieback.”. Philos Trans R Soc Lond B 363:1857–1864. doi:10.1098/rstb.2007.0028

    Article  Google Scholar 

  • IBGE, Brazilian Institute of Geography and Statistics (2015) Municipal agricultural production. Available at http://seriesestatisticas.ibge.gov.br/. Accessed 4 May 2015

  • INMET, Brazilian Nation Meteorological Institute (2012) Automatic weather station data. Available at http://www.inmet.gov.br/portal/

  • INPE, Brazilian National Space Agency (2015) PRODES project: satellite monitoring of deforestation in the Brazilian Amazon. Available at http://www.obt.inpe.br/prodes/prodes_1988_2014.htm

  • IPCC, Intergovernmental Panel on Climate Change (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K et al (eds) IPCC climate change 2013. Cambridge University Press, Cambridge and New York, NY, p 1535

    Google Scholar 

  • Juárez RIN, Hodnett MG, Fu R, Goulden ML, von Randow C (2007) Control of dry season evapotranspiration over the Amazonian forest as inferred from observations at a southern Amazon forest site. J Climate 20:2827–2839

    Article  Google Scholar 

  • Knox R, Bisht G, Wang J, Bras RL (2011) Precipitation variability over the forest to non-forest transition in southwestern Amazonia. J Climate 24(9):2368–2377. doi:10.1175/2010JCLI3815.1

    Article  Google Scholar 

  • Lapola DM, Oyama MD, Nobre CA (2009) Exploring the range of climate biome projections for tropical South America: the role of CO2fertilization and seasonality. Global Biogeochem Cycles 23(3). doi:10.1029/2008gb003357

    Google Scholar 

  • Lathuillière MJ, Johnson MS, Donner SD (2012) Water use by terrestrial ecosystems: temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. Environ Res Lett 7:24024. doi:10.1088/1748-9326/7/2/024024

    Article  Google Scholar 

  • Macedo M, Defries R, Morton D, Stickler C, Galford G, Shimabukuro Y (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc Natl Acad Sci USA 109(4):1341–1346. doi:10.1073/pnas.1111374109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi Y, Pegoraro E, Nobre AD, Pereira MGP, Grace J, Culf AD, Clement R (2002) The water and energy dynamics of a central Amazonian rain forest. J Geophys Res Atmos 107:D20

    Article  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319(5860):169–172. doi:10.1126/science.1146961

    Article  CAS  PubMed  Google Scholar 

  • Malhi Y, Aragao LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci USA. doi:10.1073/pnas.0804619106

    PubMed  PubMed Central  Google Scholar 

  • Marengo JA (1992) Interannual variability of surface climate in the Amazon basin. Int J Climatol 12:853–863

    Article  Google Scholar 

  • Marengo JA, Tomasella J (1998) Trends in streamflow and rainfall in tropical South America: Amazonia, eastern Brazil and northwestern Peru. J Geophys Res 103(D2):1775–1783

    Article  CAS  Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Oyama MD, Oliveira GS, Oliveira R, Camargo H, Alves LM, Brown IF (2008a) The drought of Amazonia in 2005. J Climate 21:495–516

    Article  Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Cardosa MF, Oyama MD (2008b) Hydro-climate and ecological behaviour of the drought of Amazonia in 2005. Philos Trans R Soc 363(1498):1773–1778

    Article  CAS  Google Scholar 

  • Marengo JA, Tomasella J, Soares WR, Alves LM, Nobre CA (2011a) Extreme climatic events in the Amazon basin. Climatological and hydrological context of recent floods. Theor Appl Climatol. doi:10.1007/s00704-00011-00465-00701

    Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011b) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi:10.1029/2011GL047436

    Article  Google Scholar 

  • McAlpine CA, Etter A, Fearnside PM, Seabrook L, Laurance WF (2009) Increasing world consumption of beef as a driver of regional and global change: a call for policy action based evidence from Queensland (Australia), Colombia and Brazil. Glob Environ Chang 19(1):21–33

    Article  Google Scholar 

  • Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer, New York, NY, pp 43–60. doi:10.1007/978-90-4818725-6_3

    Chapter  Google Scholar 

  • Melack JM, Novo EMLM, Forsberg BR, Piedade MTF, Maurice L (2009) Floodplain ecosystem processes. In: Keller MEA (ed) Amazonia and global change. American Geophysical Union Books, Washington, DC, pp 525–542

    Chapter  Google Scholar 

  • Meyfroidt P, Lambin EF (2011) Global forest transition: prospects for an end to deforestation. Annu Rev Environ Resour 36:343–371

    Article  Google Scholar 

  • Moraes JM, Schuler AE, Dunne T, Figueiredo RO, Victoria RL (2006) Water storage and runoff processes in plinthic soils under forest and pasture in eastern Amazonia. Hydrol Process 20:2509–2526

    Article  Google Scholar 

  • Mu QZ, Zhao MS, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Nepstad DC, Carvalho CJR, Davidson EA, Jipp P, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Nepstad DC, Moutinho PRS, Dias-Filho MB, Davidson EA, Cardinot G, Markewitz D, Figueiredo R, Viana N, Lefebvre PA, Ray DG, Chambers JQ, Barros L, Ishida FY, Belk E, Schwalbe K (2002) The effects of rainfall exclusion on canopy processes and biogeochemistry of an Amazon forest. J Geophys Res 107(D20):53-1–53-18

    Article  CAS  Google Scholar 

  • Nepstad DC, Lefebvre PA, Silva UL Jr, Tomasella J, Schlesinger P, Solorzano L, Moutinho PRS, Ray DG (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob Chang Biol 10:704–717

    Article  Google Scholar 

  • Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Climate 4:957–988

    Article  Google Scholar 

  • Nobre P, Malagutti M, Urbano DF, Almeida RAF, Giarolla E (2009) Amazon deforestation and climate change in a coupled model simulation. J Climate 22:5686–5697

    Article  Google Scholar 

  • Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19:574–581

    Article  Google Scholar 

  • Oliveira LJC, Costa MH, Soares-Filho BS, Coe MT (2013) Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ Res Lett 8:024021. doi:10.1088/1748-9326/8/2/024021

    Article  Google Scholar 

  • Ometto JP, Aguiar APD, Martinelli LA (2011) Amazon deforestation in Brazil: effects, drivers and challenges. Future Sci 2:575–585

    Google Scholar 

  • Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for tropical South America. Geophys Res Lett 30(23):2199

    Article  Google Scholar 

  • Panday PK, Coe MT, Macedo MN, Lefebvre P, Castanho ADA (2015) Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J Hydrol 523:822–829

    Article  Google Scholar 

  • Pereira EB, Martins FR, Abreu SL, Ruther R (2006) Brazilian atlas of solar energy. UNEP, São Jose dos Campos

    Google Scholar 

  • Poveda G, Mesa OJ (1993) Metodologias de Prediccion de la Hidrologia Colombiana Considerando el Evento El Niño-Oscilacion del Sur (ENOS), vol 17, Atmosfera. Sociedad Colombiana de Meteorologia, Bogota

    Google Scholar 

  • Priante-Filho N, Vourlitis GL, Hayashi MMS, Noguiera JS, Campelo JH Jr, Nunes PC, Sousa LSE, Couto EG, Hoeger W (2004) Comparison of the mass and energy exchange of a pasture and a mature transitional tropical forest of the southern Amazon Basin during a seasonal transition. Glob Chang Biol 10:863–876

    Article  Google Scholar 

  • Rammig A, Jupp T, Thonicke K, Tietjen B, Heinke J, Ostberg S, Lucht W, Cramer W, Cox P (2010) Estimating the risk of Amazonian forest dieback. New Phytol 187:694–706. doi:10.1111/j.1469-8137.2010.03318.x

    Article  CAS  PubMed  Google Scholar 

  • Richey JE, Meade RH, Salati E, Devol AH, Nordin CF Jr, dos Santos U (1986) Water discharge and suspended sediment concentrations in the Amazon River: 1982–1984. Water Resour Res 22(5):756–764

    Article  CAS  Google Scholar 

  • Ronchail JG, Cochonneau M, Molinier JL, Guyot AG, de Miranda C, Guimarães V, de Oliveira E (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and tropical Atlantic Oceans. Int J Climatol 22:1663–1686

    Article  Google Scholar 

  • Saad SI, da Rocha HR, Silva Dias MAF, Rosolem R (2010) Can the deforestation breeze change the rainfall in Amazonia? A case study for the BR-163 highway region. Earth Interact 14(18):1–25. doi:10.1175/2010EI351.1

    Article  Google Scholar 

  • Salati E, Nobre CA (1991) Possible climatic impacts of tropical deforestation. Clim Change 19:177–198

    Article  Google Scholar 

  • Sampaio G, Nobre C, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34:L17709. doi:10.1029/2007GL030612

    Article  Google Scholar 

  • Shuttleworth WJ (1988) Evaporation from Amazonian forests. Philos Trans R Soc B 233:321–346

    Google Scholar 

  • Silvério DV, Brando PM, Macedo MN, Beck PSA, Bustamante M, Coe MT (2015) Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environ Res Lett 10:104105. doi:10.1088/1748-9326/10/10/104015

    Article  Google Scholar 

  • Snyder PK (2010) The influence of tropical deforestation on the northern hemisphere climate by atmospheric teleconnections. Earth Interact 14:1–34. doi:10.1175/2010EI280.1

    Article  Google Scholar 

  • Soares-Filho B, Nepstad D, Curran L, Cerqueira G, Garcia R, Ramos C, Voll E, McDonald A, Lefebvre P, Schlesinger P, McGrath D (2006) Modelling conservation in the Amazon basin. Nature 440:520–523

    Article  CAS  PubMed  Google Scholar 

  • Souza PJ, Ribeiro A, da Rocha EJP, Bothelo MDM, Marlisom A, De Sousa L, De Souza EB, Farias JRB (2011) Impacts of soyabean expansion on the Amazon energy balance: a case study. Exp Agric 47(3):553–567

    Article  Google Scholar 

  • Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(7415):282–U127. doi:10.1038/nature11390

    Article  CAS  PubMed  Google Scholar 

  • Stickler CM, Coe MT, Costa MH, Nepstad DC, McGrath DG, Dias LCP, Rodrigues HO, Soares-Filho BS (2013) Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc Natl Acad Sci USA 110(23):9601–9606. doi:10.1073/pnas.1215331110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trancoso R (2006) Changes in land cover and alterations in the hydrological response of catchments in Amazonia. INPA/UFAM, Brazil, p 139

    Google Scholar 

  • von Randow C, Manzi AO, Kruijt B, De Oliveira PJ, Zanchi FB, Silva RL, Hodnett MG, Gash JHC, Elbers JA, Waterloo MJ, Cardoso FL, Kabat P (2004) Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor Appl Climatol 78:5–26. doi:10.1007/s00704-004-0041-z

    Google Scholar 

  • Walker R, Moore NJ, Arima E, Perz S, Simmons C, Caldas M, Vergara D, Bohrere C (2009) Protecting the Amazon with protected areas. Proc Natl Acad Sci USA 106(26):10582–10586. doi:10.1073/pnas.0806059106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Eltahir EAB (2000) Role of vegetation dynamics in enhancing the low frequency variability of the Sahel rainfall. Water Resour Res 36:1013–1021

    Article  Google Scholar 

  • Zeng N, Neelin JD, Lau K-M, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540

    Article  CAS  PubMed  Google Scholar 

  • Zeng N, Yoon J-H, Marengo JA, Subramaniam A, Nobre CA, Mariotti A, Neelin D (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3. doi:10.1088/1748-9326/1083/1081/014002

Download references

Acknowledgements

Funding from the US National Aeronautics and Space Administration, the US National Science Foundation, and the Gordon and Betty Moore Foundation has supported much of our research in the Amazon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Coe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coe, M.T., Macedo, M.N., Brando, P.M., Lefebvre, P., Panday, P., Silvério, D. (2016). The Hydrology and Energy Balance of the Amazon Basin. In: Nagy, L., Forsberg, B., Artaxo, P. (eds) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49902-3_3

Download citation

Publish with us

Policies and ethics