Skip to main content

Modelling Amazonian Carbon Budgets and Vegetation Dynamics in a Changing Climate

  • Chapter
  • First Online:
Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin

Abstract

Modelling the Amazon terrestrial carbon budget and vegetation dynamics is still at an early stage, despite the large amount of research on dynamic vegetation models and land–atmosphere exchange. We give an overview of the most important issues and state of the art until 2014 concerning the modelling of carbon budgets and vegetation dynamics of the Amazon forests, and tropical forests in general. This includes water relations, temperature dependence, CO2 and nutrient dependence, patterns in growth and mortality, and fire. In water relations, it is most urgent to better represent in models the different plant strategies in avoiding water stress. Models need to adopt temperature dependence for primary production and respiration that is both representative for tropical conditions and is also able to acclimate to changing climate. To enable realistic response to increasing CO2 levels, it is essential that models include dependence on soil nutrients in a dynamic way, including feedbacks of changing vegetation on nutrient availability. For that, and also to better understand the spatial variation of biomass over the Amazon, dynamic allocation modelling and better understanding of tree mortality processes are essential which both need to move away from assuming fixed rates. Finally, the implementation of fire needs improving in all models. All in all, this chapter presents both a challenging research and experimental agenda and an outlook to more robust models for Amazonian vegetation in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar APD, Ometto JP, Nobre C, Lapola DM, Almeida C, Vieira IC, Castilla‐Rubio JC (2012) Modeling the spatial and temporal heterogeneity of deforestation‐driven carbon emissions: the INPE‐EM framework applied to the Brazilian Amazon. Glob Chang Biol 18(11):3346–3366

    Article  Google Scholar 

  • Anderson LO, Malhi Y, Aragao LE, Ladle R, Arai E, Barbier N, Phillips O (2010) Remote sensing detection of droughts in Amazonian forest canopies. New Phytol 187(3):733–750

    Article  PubMed  Google Scholar 

  • Araújo AC, Nobre AD, Culf AD, Elbers JA, Kruijt B, Von Randow C, Kabat P, Stefani P, Mendes D (2002) Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site. J Geophys Res 107(D20):8090. doi:10.1029/2001JD000676

    Article  Google Scholar 

  • Araujo-Murakami A, Doughty CE, Metcalfe DB, Silva-Espejo JE, Arroyo L, Heredia JP, Flores M, Sibler R, Mendizabal LM, Pardo-Toledo E et al (2014) The productivity, allocation and cycling of carbon in forests at the dry margin of the Amazon forest in Bolivia. Plant Ecol Divers 7(1–2):55–69

    Article  Google Scholar 

  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Atkinson LJ, Fisher RA, Campbell CD, Zaragoza-Castells J, Pitchford JW, Woodward FI, Hurry V (2008) Using temperature- dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Glob Chang Biol 14:2709–2726

    Google Scholar 

  • Aubry-Kientz M, Hérault B, Ayotte-Trépanier C, Baraloto C, Rossi V (2013) Toward trait-based mortality models for tropical forests. PLoS ONE 8(5), e63678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva JNM, Martinez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Chang Biol 10:545–562

    Article  Google Scholar 

  • Baker IT, Prihodko L, Denning AS, Goulden ML, Miller SD, Rocha HR (2008) Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res Biogeosci 113:1–10

    Article  Google Scholar 

  • Ball J, Woodrow LE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Nijhoff, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  • Belk EL, Markewitz D, Rasmussen TC, Maklouf Carvalho EJ, Nepstad DC, Davidson EA (2007) Modeling the effects of throughfall reduction on soil water content in a Brazilian Oxisol under a moist tropical forest. Water Resour Res 43. doi:10.1029/2006WR005493

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP (2001) Improved temperature response functions for mod- els of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–260

    Article  CAS  Google Scholar 

  • Bonal D, Bosc A, Ponton S et al (2008) Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Chang Biol 14(8):1917–1933

    Article  Google Scholar 

  • Booth BBB, Jones CD, Collins M et al (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7:024002

    Article  CAS  Google Scholar 

  • Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc Lond B Biol Sci 363:1839–1848

    Article  PubMed  PubMed Central  Google Scholar 

  • Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Alencar A (2014) Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Nat Acad Sci 111(17):6347–6352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buurman P, Roscoe R (2011) Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis-GC/MS study. Eur J Soil Sci 62:253–266

    Article  CAS  Google Scholar 

  • Carey EV, Brown S, Gillespie AJR, Lugo AE (1994) Tree mortality in mature lowland tropical moist and tropical lower montane moist forests of Venezuela. Biotropica 26:255–265

    Article  Google Scholar 

  • Castanho A, Coe M, Costa M, Malhi Y, Galbraith D, Quesada C (2013) Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences 10:2255–2272

    Article  Google Scholar 

  • Cernusak LA, Winter K, Turner BL (2011) Transpiration modulates phosphorus acquisition in tropical tree seedlings. Tree Physiol 31:878–885

    Article  PubMed  Google Scholar 

  • Cernusak LA, Winter K, Dalling JW, Holtum JA, Jaramillo C, Körner C, Wright SJ (2013) Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct Plant Biol 40(6):531–551

    Article  CAS  Google Scholar 

  • Chambers JQ, Tribuzy ES, Toledo LC et al (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:72–88

    Article  Google Scholar 

  • Chao KJ, Phillips OL, Gloor E, Monteagudo A, Torres-Lezama A, Vasquez Martinez R (2008) Growth and wood density predict tree mortality in Amazon forests. J Ecol 96:281–292

    Article  Google Scholar 

  • Chao KJ, Phillips OL, Monteagudo A, Torres-Lezama A, Martinez RV (2009) How do trees die? Mode of death in northern Amazonia. J Veg Sci 20:260–268

    Article  Google Scholar 

  • Christoffersen BO, Restrepo-Coupe N, Arain MA, Baker IT, Cestaro BP, Ciais P, Fisher JB, Galbraith D, Guan X, Gulden L, van den Hurk B, Ichii K, Imbuzeiro H, Jain A, Levine N, Miguez-Macho G, Poulter B, Roberti DR, Sakaguchi K, Sahoo A, Schaefer K, Shi M, Verbeeck H, Yang Z-L, Araújo AC, Kruijt B, Manzi AO, da Rocha HR, von Randow C, Muza MN, Borak J, Costa MH, Gonçalves de Gonçalves LG, Zeng X, Saleska SR (2014) Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agric For Meteorol 191:33–50

    Article  Google Scholar 

  • Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Huntingford C, Cox PM (2011) The Joint UK Land Environment Simulator (JULES), model description—part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 4:701–722. doi:10.5194/gmd-4-701-2011

    Article  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. In: Jennings DH (ed) Integration of activity in the higher plant. Cambridge University Press, Cambridge, pp 471–505

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  PubMed  Google Scholar 

  • Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494(7437):341–344

    Article  CAS  PubMed  Google Scholar 

  • da Costa ACL, Metcalfe DB, Doughty CE, Oliveira AR, Neto GFC, da Costa MC, Silva JA Jr, Aragão LEOC, Almeida S, Galbraith DR et al (2014) Ecosystem respiration and net primary productivity after 8–10 years of experimental throughfall reduction in an eastern Amazon forest. Plant Ecol Divers 7(1–2):7–24

    Article  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Chang Biol 12(2):154–164

    Article  Google Scholar 

  • Davidson EA, de Araujo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM Jr, Wofsy SC (2012) The Amazon basin in transition. Nature 481(7381):321–328

    Article  CAS  PubMed  Google Scholar 

  • Delbart N, Ciais P, Chave J, Viovy N, Malhi Y, Le Toan T (2010) Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamics vegetation model. Biogeosciences 7:3017–3039

    Article  Google Scholar 

  • DeLucia EH, Moore DJ, Norby RJ (2005) Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Global Biogeochem Cycles 19, GB3006. doi:10.1029/2004GB002346

    Article  CAS  Google Scholar 

  • Doughty CE (2011) An in situ leaf and branch warming experiment in the Amazon. Biotropica 43(6):658–665

    Article  Google Scholar 

  • Doughty CE, Goulden ML (2008) Are tropical forests near a high temperature threshold? J Geophys Res Biogeosci (2005–2012) 113(G1), doi:10.1029/2007JG000632

    Google Scholar 

  • Doughty CE, Metcalfe DB, da Costa MC, de Oliveira AAR, Neto GFC, Silva JA, Aragão LEOC, Almeida SS, Quesada CA, Girardin CAJ et al (2014) Production, allocation and cycling of carbon in a forest on fertile terra preta soil in Eastern Amazonia compared with a forest on adjacent infertile soil. Plant Ecol Divers 7(1–2):41–53

    Article  Google Scholar 

  • Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48:609–639

    Article  CAS  Google Scholar 

  • Dufresne JL, Friedlingstein P, Berthelot M et al (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29(10):43-1–43-4

    Google Scholar 

  • Dybzinski R, Farrior C, Wolf A, Reich PB, Pacala SW (2011) Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. Am Nat 177:153–166

    Article  PubMed  Google Scholar 

  • Egea G, Verhoef A, Vidale PL (2011) Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agric For Meteorol 151:1370–1384

    Article  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82

    Article  CAS  PubMed  Google Scholar 

  • Espírito-Santo FDB, Gloor M, Keller M, Malhi Y, Saatchi S, Nelson B, Oliveira Junior RC, Pereira C, Lloyd J, Frolking S, Palace M, Shimabukuro YE, Duarte V, Monteagudo Mendoza A, López-González G, Baker TR, Feldpausch T, Brienen RJW, Asner GP, Boyd DS, Phillips OL (2014) Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat Commun 5:3434

    PubMed  PubMed Central  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Fauset S, Baker TR, Lewis SL et al (2012) Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol Lett 15:1120–1129

    Article  PubMed  Google Scholar 

  • Ferry B, Morneau F, Bontemps JD, Blanc L, Freycon V (2010) Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol 98:106–116

    Article  Google Scholar 

  • Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P (2006) Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ 29:151–165

    Article  PubMed  Google Scholar 

  • Fisher RA, Williams M, Da Costa AL, Malhi Y, Da Costa RF, Almeida S, Meir P (2007) The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Glob Chang Biol 13:2361–2378

    Article  Google Scholar 

  • Fisher RA, Williams M, Ruivo MLP, Costa AL, Meir P (2008) Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforest sites. Agric For Meteorol 148:850–861

    Article  Google Scholar 

  • Fisher R, McDowell N, Purves D, Moorcroft P, Sitch S, Cox P, Huntingford C, Meir P, Woodward FI (2010a) Assessing uncertainties in a second‐generation dynamic vegetation model caused by ecological scale limitations. New Phytol 187:666–681

    Article  PubMed  Google Scholar 

  • Fisher JB, Sitch S, Malhi Y, Fisher RA, Huntingford C, Tan S‐Y (2010b) Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Global Biogeochem Cycles 24, GB1014

    Article  CAS  Google Scholar 

  • Franklin O, McMurtrie RE, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, Oren R, Norby RJ (2009) Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Glob Chang Biol 15:132–144

    Article  Google Scholar 

  • Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brannstrom A, Dybzinski R (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32:648–666

    Article  CAS  PubMed  Google Scholar 

  • Franks PJ, Adams MA, Amthor JS et al (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol 197:1077–1094

    Article  CAS  PubMed  Google Scholar 

  • Friedlingstein P, Cox PM, Betts RA, Bopp L, Bloh WV, Brovkin V, Cadule P, Doney SC, Eby M, Fung IY, Bala G, John J, Jones CD, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner PJ, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate—carbon cycle feedback analysis: results from the C4 MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Fyllas NM, Quesada CA, Phillips OL, Lloyd J (2012) Coordination of physiological and structural traits in Amazon forest trees. Biogeosciences 9:775–801

    Article  Google Scholar 

  • Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol 187(3):647–665

    Article  PubMed  Google Scholar 

  • Galbraith D, Malhi Y, Affum-Baffoe K, Castanho ADA, Doughty CE, Fisher RA, Lewis SL, Peh KSH, Phillips OL, Quesada CA, Sonke B, Lloyd J (2013) Residence times of woody biomass in tropical forests. Plant Ecol Divers 6(1):139–157

    Article  Google Scholar 

  • Galbraith D, Malhi Y, Aragão L, Baker T (2014) The ecosystem dynamics of Amazonia and Andean forests. Plant Ecol Divers 7:1–6

    Article  Google Scholar 

  • Gale N, Barfod AS (1999) Canopy tree mode of death in a western Ecuadorian rain forest. J Trop Ecol 15:415–436

    Article  Google Scholar 

  • Gatti LV, Gloor M, Miller JB, Doughty CE, Malhi Y, Domingues LG et al (2014) Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506(7486):76–80

    Article  CAS  PubMed  Google Scholar 

  • Girardin CJ, Malhi Y, Aragao LEOC et al (2010) Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Chang Biol 16:3176–3192

    Article  Google Scholar 

  • Girardin CAJ, Silva Espejo J, Doughty CE, Huasco WH, Metcalfe DB, Durand-Baca L, Marthews T, Aragão LEOC, Farfan W, Cabrera KG et al (2014) Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecol Divers 7(1–2):107–123

    Article  Google Scholar 

  • Golding N, Betts RA (2008) Fire risk in Amazonia due to climate change in the HadCM3 climate model: potential interactions with deforestation. Global Biogeochem Cycles 22, GB4007

    Article  CAS  Google Scholar 

  • Goll DS, Brovkin V, Parida BR, Reick CH, Kattge J, Reich PB, van Bodegom PM, Niinemets U (2012) Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9:3547–3569

    Article  CAS  Google Scholar 

  • Gonçalves LGG, Borak JS, Costa MH, Saleska SR, Baker I, Restrepo-Coupe N, Muza MN (2013) Overview of the Large-Scale Biosphere-Atmosphere Experiment in Amazônia Data Model Intercomparison Project (LBA-DMIP). Agric For Meteorol 182–183:111–127

    Article  Google Scholar 

  • Good P, Jones C, Lowe J, Betts R, Gedney N (2013) Comparing tropical forest projections from two generations of hadley centre earth system models, HadGEM2-ES and HadCM3LC. J Climate 26:495–511

    Article  Google Scholar 

  • Groenendijk M, Dolman AJ, Ammann C, Arneth A, Cescatti A, Dragoni D, Knohl A (2011) Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data. J Geophys Res 116(G4)

    Google Scholar 

  • Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. J Global Biogeochem Cycles 10:693–709

    Article  CAS  Google Scholar 

  • Hickler T, Smith B, Prentice IC, Mjofors K, Miller P, Arneth A, Sykes MT (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob Chang Biol 14:1531–1542

    Article  Google Scholar 

  • Huasco WH, Girardin CAJ, Doughty CE, Metcalfe DB, Baca LD, Silva-Espejo JE, Cabrera DG, Aragão LEOC, Davila AR, Marthews TR et al (2014) Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecol Divers 7(1–2):125–142

    Article  Google Scholar 

  • Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett 33(6), L06405

    Article  Google Scholar 

  • Hunt JF, Ohno T, He Z, Honeycutt CW, Dail DB (2007) Inhibition of phosphorus sorption to goethite, gibbsite and kaolin by fresh and decomposed organic matter. Biol Fertil Soils 44:277–288

    Article  CAS  Google Scholar 

  • Huntingford C, Fisher RA, Mercado L et al (2008) Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philos Trans R Soc Lond B Biol Sci 363:1857–1864

    Article  PubMed  PubMed Central  Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geosci 6(4):268–273

    Article  CAS  Google Scholar 

  • Jacobs CMJ, Van den Hurk BMM, De Bruin HAR (1996) Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agric For Meteorol 80:111–134

    Article  Google Scholar 

  • Jarvis PG (1976) Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philos Trans R Soc Lond B Biol Sci 273:593–610

    Article  CAS  Google Scholar 

  • Jupp TE, Cox PM, Rammig A, Thonicke K, Lucht W, Cramer W (2010) Development of probability density functions for future South American rainfall. New Phytol 187(3):682–693

    Article  PubMed  Google Scholar 

  • Kim Y, Knox RG, Longo M, Medvigy D, Hutyra LR, Pyle EH, Wofsy SC, Bras RL, Moorcroft PR (2012) Seasonal carbon dynamics and water fluxes in an Amazon rainforest. Glob Chang Biol 18:1322–1334

    Article  Google Scholar 

  • King DA (1993) A model analysis of the influence of root and foliage allocation on forest production and competition between trees. Tree Physiol 12:119–135

    Article  PubMed  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Korning J, Balslev H (1994) Growth and mortality of trees in Amazonian tropical rain forest in Ecuador. J Veg Sci 4:77–86

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet‐Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system. Global Biogeochem Cycles 19, GB1015. doi:10.1029/2003GB002199

    Article  CAS  Google Scholar 

  • Kruijt B, Witte JPM, Jacobs CM, Kroon T (2008) Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: a practical approach for the Netherlands. J Hydrol 349(3):257–267

    Article  Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem Cycles 4(3):795–825

    Article  Google Scholar 

  • Kull O, Kruijt B (2002) Leaf photosynthetic light response: a mechanistic model for scaling photosynthesis to leaves and canopies. Funct Ecol 12:767–777

    Article  Google Scholar 

  • Kursar TA, Engelbrecht BMJ, Burke A, Tyree MT, El Omari B, Giraldo JP (2009) Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct Ecol 23:93–102

    Article  Google Scholar 

  • Lapola DM, Oyama MD, Nobre CA (2009) Exploring the range of climate biome projections for tropical South America: the role of CO2 fertilization and seasonality. Global Biogeochem Cycles 23:1–16

    Article  CAS  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Levy PE, Cannell MGR, Friend AD (2004) Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob Environ Chang 14:21–30

    Article  Google Scholar 

  • Lewis SL, Brando PM, Phillips OL, van der Heijden GM, Nepstad D (2011) The 2010 amazon drought. Science 331(6017):554

    Article  CAS  PubMed  Google Scholar 

  • Li W, Fu R, Dickinson RE (2006) Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J Geophys Res Atmos 111(D2)

    Google Scholar 

  • Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1985) Mortality patterns and stand turnover rates in a wet tropical forest in Costa Rica. J Ecol 73:915–924

    Article  Google Scholar 

  • Lines ER, Coomes DA, Purves DW (2010) Influences of forest structure, climate and species composition on tree mortality across the eastern US. PLoS One 5, e13212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos Trans R Soc Lond B Biol Sci 363:1811–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd J, Bird MI, Veenendaal EM, Kruijt B (2001) Should phosphorus availability be constraining moist tropical forest responses to increasing CO2 concentrations? In: Shulze ED, Harrison SP, Heimann M, Holland EA, Lloyd J, Prentice IC, Shimel D (eds) Global biogeochemical cycles in the climate system. Academic Press, New York, NY

    Google Scholar 

  • Lloyd J, Patino S, Paiva RQ et al (2010) Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7:1833–1859

    Article  CAS  Google Scholar 

  • Lola da Costa AC, Galbraith D, Almeida S, Portela BTT, da Costa M, de Athaydes Silva Junior J, Braga AP, de Gonçalves PHL, de Oliveira AAR, Fisher R, Phillips OL, Metcalfe DB, Levy P, Meir P (2010) Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187(3):579–591

    Article  Google Scholar 

  • Long SP, Hutchin PR (1991) Primary production in grasslands and coniferous forests with climate change—an overview. Ecol Appl 1:139–156

    Article  PubMed  Google Scholar 

  • Loveys BR, Atkinson LJ, Sherlock DJ, Roberts RL, Fitter AH, Atkin OK (2003) Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob Chang Biol 9(6):895–910

    Article  Google Scholar 

  • Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf AD, Scott S (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res Atmos 103:31593–31612

    Article  CAS  Google Scholar 

  • Malhi Y, Phillips OL, Lloyd J et al (2002) An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J Veg Sci 13:439–450

    Article  Google Scholar 

  • Malhi Y, Aragao LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009a) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Nat Acad Sci U S A 106(49):20610–20615

    Article  CAS  Google Scholar 

  • Malhi Y, Aragão LEOC, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson LO, Brando PM, Chambers JQ, COSTA ACL, Hutyra LR, Oliveira PJC, Patiño S, Pyle EH, Robertson AL, Teixeira LM (2009b) Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob Chang Biol 15:1255–1274

    Article  Google Scholar 

  • Malhi Y, Doughty C, Galbraith D (2011) The allocation of ecosystem net primary productivity in tropical forests. Philos Trans R Soc Lond B Biol Sci 366:3225–3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi Y, Amezquita FF, Doughty CE, Silva-Espejo J, Girardin CAJ, Metcalfe DB, Aragão LEOC, Huaraca-Quispe LP, Almazora-Taype I, Eguiluz-Mora L et al (2014) The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecol Divers 7(1–2):85–105

    Article  Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Cardoso MF, Oyama MD (2008) Hydro-climate and ecological behaviour of the drought of Amazonia in 2005. Philos Trans R Soc Lond B Biol Sci 363:1773–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markewitz D, Devine S, Davidson EA, Brando P, Nepstad DC (2010) Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytol 187:592–607

    Article  PubMed  Google Scholar 

  • Marthews TR, Quesada CA, Galbraith DR, Malhi Y, Mullins CE, Hodnett MG, Dharssi I (2013) High-resolution hydraulic parameter maps for surface soils in tropical South America. Geosci Model Dev Discuss 6:6741–6774. doi:10.5194/gmdd-6-6741-2013

    Article  Google Scholar 

  • Mcdowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Mcdowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532

    Article  PubMed  Google Scholar 

  • McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM (2008) Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Funct Plant Biol 35:521–534

    Article  CAS  Google Scholar 

  • Medlyn BE, Dreyer E, Ellsworth D, Fortsreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Lousteau D (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    Article  CAS  Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CV, Wingate L (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol 17(6):2134–2144

    Article  Google Scholar 

  • Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model version 2. J Geophys Res Biogeosci 114, G01002

    Article  Google Scholar 

  • Meir P, Woodward FI (2010) Amazonian rain forests and drought: response and vulnerability. New Phytol 187:553–557

    Article  PubMed  Google Scholar 

  • Meir P, Kruijt B, Broadmeadow M et al (2002) Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ 25:343–357

    Article  Google Scholar 

  • Meir P, Metcalfe DB, Costa ACL, Fisher RA (2008) The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Philos Trans R Soc Lond B 363(1498):1849–1855

    Article  CAS  Google Scholar 

  • Mercado LM, Lloyd J, Dolman AJ, Sitch S, Patiño S (2009) Modelling basin-wide variations in Amazon forest productivity—Part 1: model calibration, evaluation and upscaling functions for canopy photosynthesis. Biogeosciences 6(7):1247–1272

    Article  CAS  Google Scholar 

  • Mercado LM et al (2011) Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philos Trans R Soc B Biol Sci 366(1582):3316–3329

    Article  Google Scholar 

  • Metcalfe DB, Meir P, Aragao LEOC et al (2010) Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytol 187:608–621

    Article  CAS  PubMed  Google Scholar 

  • Mitchard ETA, Saatchi SS, Baccini A, Asner GP, Goetz SJ, Harris NL, Brown S (2013) Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manage 8:10. doi:10.1186/1750-0680-8-10

    Article  Google Scholar 

  • Monteith JL (1995) Accommodation between transpiring vegetation and the convective boundary-layer. J Hydrol 166:251–263

    Article  Google Scholar 

  • Moorcroft PR, Hurtt GC, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 71(4):557–586

    Article  Google Scholar 

  • Morton DC, Nagol J, Carabajal CC, Rosette J, Palace M, Cook BD, Vermote EF, Harding DJ, North PRJ (2014) Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506(7487):221–224

    Article  CAS  PubMed  Google Scholar 

  • Nepstad DC, Carvalho CR, Davidson EA, Jipp P, Lefebvre P, Negreiros GHD, da Silva ED, Stone TA, Trumbore S, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Nepstad DC, Moutinho P, Dias MB et al (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res Atmos 107:1–18

    Article  CAS  Google Scholar 

  • Nepstad DC, Marisa Tohver I, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269

    Article  PubMed  Google Scholar 

  • Nobre CA, Borma LS (2009) “Tipping points” for the Amazon forest. Curr Opin Environ Sustain 1:28–36

    Article  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, Mcmurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Nat Acad Sci U S A 107:19368–19373

    Article  CAS  Google Scholar 

  • O’Sullivan OS, Weerasinghe KWLK, Evans JR, Egerton JJG, Tjoelker MG, Atkin OK (2013) High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant Cell Environ 36(7):1268–1284

    Article  PubMed  Google Scholar 

  • Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175–190

    Article  CAS  Google Scholar 

  • Pasquel JA, Doughty CE, Metcalfe DB, Silva-Espejo J, Girardin AJ, Gutierrez JAC, Aguilar GEN, Quesada CA, Pizango JMR, Huaymacari JMR et al (2014) The seasonal cycle of productivity, metabolism and carbon dynamics in a wet seasonal forest in north-west Amazonia (Iquitos, Peru). Plant Ecol Divers 7(1–2):71–83

    Article  Google Scholar 

  • Phillips OL, Baker TR, Arroyo L, Higuchi N, Killeen TJ, Laurance WF, Lewis SL, Lloyd J, Malhi Y, Monteagudo A, Neill DA, Vargas PN, Silva JNM, Terborgh J, Martinez RV, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, Di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patino S, Pitman NCA, Quesada CA, Salidas M, Lezama AT, Vinceti B (2004) Pattern and process in Amazon tree turnover, 1976-2001. Philos Trans R Soc Lond B Biol Sci 359:381–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips OL, Aragão LEOC, Lewis SL et al (2009) Drought Sensitivity of the Amazon Rainforest. Sci Mag 323:1344–1347

    CAS  Google Scholar 

  • Phillips OL, Van Der Heijden G, Lewis SL et al (2010) Drought-mortality relationships for tropical forests. New Phytol 187:631–646

    Article  PubMed  Google Scholar 

  • Plaut JA, Yepez EA, Hill J, Pangle R, Sperry JS, Pockman WT, Mcdowell NG (2012) Hydraulic limits preceding mortality in a pinon-juniper woodland under experimental drought. Plant Cell Environ 35:1601–1617

    Article  PubMed  Google Scholar 

  • Potter C, Klooster S, Genovese V (2012) Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Change 115:365–378

    Article  Google Scholar 

  • Poulter B, Hattermann F, Hawkins E, Zaehle S, Sitch S, Restrepo-Coupe N, Heyder U, Cramer W (2010) Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters. Glob Chang Biol 16:2476–2495

    Article  Google Scholar 

  • Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro H, Rowland L et al (2013) Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytol 200(2):350–365

    Article  PubMed  Google Scholar 

  • Putz FE, Milton K (1982) Tree mortality rates on Barro Colorado Island. In: Leigh AS, Rand AS, Windsor DM (eds) Ecology of a tropical forest. Smithsonian Press, Washington, DC, pp 95–100

    Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M et al (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541

    Article  CAS  Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440

    Article  CAS  Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett M, Herrera R, Almeida S, Alvarez DE, Arneth A, Arroyo L, Chao K-J, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio CE, Jiménez EM, Killeen T, Lezama AT, Lloyd G, López-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez VP, Paiva R, Peacock J, Peñuela MC, Peña CA, Pitman NCA, Priante FN, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    Article  Google Scholar 

  • Rammig A, Jupp T, Thonicke K, Tietjen B, Heinke J, Ostberg S, Lucht W, Cramer W, Cox P (2010) Estimating the risk of Amazonian forest dieback. New Phytol 187(3):694–706

    Article  CAS  PubMed  Google Scholar 

  • Rocha W, Metcalfe DB, Doughty CE, Brando P, Silvério D, Halladay K, Nepstad DC, Balch JK, Malhi Y (2014) Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecol Divers 7(1–2):25–40

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, Rocha HR, Camargo PB, Crill P, Daube BC, Freitas HC, Hutyra LR, Keller M, Kirchhoff V, Menton MC, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  CAS  PubMed  Google Scholar 

  • Saleska SR, Didan K, Huete AR, da Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318(5850):612

    Article  CAS  PubMed  Google Scholar 

  • Samanta A, Ganguly S, Hashimoto H, Devadiga S, Vermote E, Knyazikhin Y, Nemani RR, Myneni RB (2010) Amazon forests did not green-up during the 2005 drought. Geophys Res Lett 37(5), L05401

    Article  Google Scholar 

  • Sampaio G, Nobre CA, Costa MH, Satyamurty P, Filho BSS, Cardoso MF (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34:1–7

    Article  Google Scholar 

  • Scheiter S, Langan L, Higgins SI (2013) Next‐generation dynamic global vegetation models: learning from community ecology. New Phytol 198(3):957–969

    Article  PubMed  Google Scholar 

  • Seiler C, Hutjes RWA, Kruijt B, Quispe J, Añez S, Arora VK et al (2014) Modeling forest dynamics along climate gradients in Bolivia. J Geophys Res Biogeosci. doi:10.1002/2013JG002509

    Google Scholar 

  • Sharkey TD, Schrader SM (2006) High temperature sense. In: Rao KVM, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 101–129

    Chapter  Google Scholar 

  • Silvestrini RA et al (2011) Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol Appl 21:1573–1590

    Article  PubMed  Google Scholar 

  • Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • Slot M, Rey-Sánchez C, Gerber S, Lichstein JW, Winter K, Kitajima K (2014) Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Glob Chang Biol. doi:10.1111/gcb.12563

    Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Chang Biol 19:45–63

    Article  PubMed  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637

    Article  Google Scholar 

  • Smith B, Wårlind D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S (2014) Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11:2027–2054. doi:10.5194/bg-11-2027-2014

    Article  Google Scholar 

  • Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(7415):282–285

    Article  CAS  PubMed  Google Scholar 

  • Stewart JWB (1988) Modelling surface conductance of Pine forest. Agric For Meteorol 43:19–35

    Article  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Subke J-A, Inglima I, Francesca Cotrufo M (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Chang Biol 12(6):921–943

    Article  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability of species among stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L, Carmona-Moreno C (2010) The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process based model. Biogeosciences 7(6):1991–2011

    Article  CAS  Google Scholar 

  • Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque J-F, Feddema JJ, Lee Y-H (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6:2099–2120

    Article  CAS  Google Scholar 

  • Toledo JJ, Magnusson WE, Castilho CV, Nascimento HEM (2012) Tree mode of death in Central Amazonia: effects of soil and topography on tree mortality associated with storm disturbances. For Ecol Manage 263:253–261

    Article  Google Scholar 

  • Tollefson J (2013) Experiment aims to steep rainforest in carbon dioxide. Nature 496:405–406

    Google Scholar 

  • Tomasella J, Hodnett M (2004) Pedotransfer functions for tropical soils. Dev Soil Sci 30:415–435

    Article  Google Scholar 

  • Turner BL, Blackwell MSA (2013) Isolating the influence of pH on the amounts and forms of soil organic phosphorus. Eur J Soil Sci 64:249–259

    Article  CAS  Google Scholar 

  • Turner BL, Engelbrecht BMJ (2011) Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103:297–315

    Article  CAS  Google Scholar 

  • Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71(2):437–449

    Article  Google Scholar 

  • Van De Weg MJ, Meir P, Grace J, Ramos GD (2012) Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168:23–34

    Article  PubMed  Google Scholar 

  • Van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubková M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G (2011) Drought and ecosystem carbon cycling. Agric For Meteorol 151(7):765–773

    Article  Google Scholar 

  • Verbeeck H et al (2011) Seasonal patterns of CO2 fluxes in Amazon forests: fusion of eddy covariance data and the ORCHIDEE model. J Geophys Res 116(G2), G02018

    Article  CAS  Google Scholar 

  • Vergara W, Sholz SM (2010) Assessment of the risk of Amazon dieback. World Bank report. http://publications.worldbank.org/index.php?main_page=product_info&products_id=23931

  • Von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97

    Article  Google Scholar 

  • Vermeulen MH, Kruijt BJ, Hickler T, Kabat, P (2015) Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest. Ear Sys Dyna 6(2):485–503

    Article  Google Scholar 

  • Von Randow C, Zeri M, Restrepo-Coupe N, Muza MN, de Gonçalves LGG, Costa MH et al (2013) Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agric For Meteorol 182:145–155

    Article  Google Scholar 

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:2261–2282

    Article  CAS  Google Scholar 

  • Wang X, Piao S, Ciais P, Friedlingstein P, Myneni RB, Cox P et al (2014) A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature. doi:10.1038/nature12915

    Google Scholar 

  • Waring RH, Landsberg JJ, Williams M (1998) Net primary production of forests: a constant fraction of gross primary production? Tree Physiol 18(2):129–134

    Article  PubMed  Google Scholar 

  • Whitaker J, Ostle N, Nottingham AT, Ccahuana A, Salinas N, Bardgett RD et al (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes‐to‐Amazon elevation gradient. J Ecol. doi:10.1111/1365-2745.12247

    Google Scholar 

  • White A, Cannell MGR, Friend AD (1999) Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Glob Environ Chang 9:S21–S30

    Article  Google Scholar 

  • Williams M, Malhi Y, Nobre AD, Rastetter EB, Grace J, Pereira MGP (1998) Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rainforest: a modelling analysis. Plant Cell Environ 21:953–968

    Article  Google Scholar 

  • Woodrow IE, Berry JA (1988) Enzymatic regulation of photosynthetic CO2, fixation in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 39(1):533–594

    Article  CAS  Google Scholar 

  • Yang X, Post WM, Thornton PE, Jain A (2013) The distribution of soil phosphorus for global biogeochemical modelling. Biogeosciences 10:2525–2537

    Article  CAS  Google Scholar 

  • Yang X, Thornton PE, Ricciuto DM, Post WM (2014) The role of phosphorus dynamics in tropical forests – a modelling study using CLM-CNP. Biogeosciences 11:1667–1681

    Article  CAS  Google Scholar 

  • Zaehle S, Friend AD (2010) Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochem Cycles 24, GB1005

    Google Scholar 

  • Zaehle S et al (2010) Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in historical terrestrial carbon balance. Global Biogeochem Cycles 24, GB1006

    Google Scholar 

  • Zimmermann M, Leifeld J, Conen F, Bird MI, Meir P (2012) Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity? Biogeochemistry 107:423–436

    Article  Google Scholar 

Download references

Acknowledgements

This review has been generated with support of funding from the international EU-FP7-AMAZALERT project (no. FP7-28266). Although the authors listed have been those contributing the main text and expertise, there are several other projects that supported these authors and numerous colleagues who have indirectly contributed by generating data, model results, and evaluations. Our gratitude therefore goes to whole the Amazon climate research community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Kruijt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kruijt, B. et al. (2016). Modelling Amazonian Carbon Budgets and Vegetation Dynamics in a Changing Climate. In: Nagy, L., Forsberg, B., Artaxo, P. (eds) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49902-3_14

Download citation

Publish with us

Policies and ethics