Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 227))

Abstract

Edaphic properties are an important environmental factor modulating the structure and function of tropical forests. Here we discuss more than a century of literature regarding the interactions between soils and forests in the Amazon basin. Soil properties are first discussed in the perspective of the sequence of geological events leading to the diverse edaphic mosaic found in the present day with the importance of soil properties in influencing nutrient cycling characteristics of mature tropical forests discussed. An examination of the relationship between nutrient concentrations in leaves versus soils is then used to show that diverse conditions of nutrient limitation and abundance exist across the basin. The interacting influences of soil physical and chemical properties in determining basin-wide patterns of forest floristic composition, above-ground biomass, growth, and tree residence time are also considered with a new conceptual model integrating the role of different soil properties as key effectors of variations in forest structure and function discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Alexander I (1989) Mycorrhizas in tropical forests. In: Proctor J (ed) Mineral nutrients in tropical forests and Savanna ecosystems. Blackwell, Oxford, pp 169–188

    Google Scholar 

  • Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13(3):199–210

    Article  Google Scholar 

  • Arshad MA, Lowery B, Grossman B (1996) Physical tests for monitoring soil quality. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, WI, pp 123–141, SSSA Special Publication, 49

    Google Scholar 

  • Aubert G, Tavernier R (1972) The soils of Africa. In: Soils of the humid tropics. National Academy of Science, Washington, DC, pp 17–44

    Google Scholar 

  • Baillie IC (1989) Soil characteristic and classification in relation to the mineral nutrition of tropical wooded ecosystems. In: Proctor J (ed) Mineral nutrients in tropical forests and Savanna ecosystems. Blackwell, Oxford, pp 15–26

    Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Di Fiori A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neil DA, Vargas PN, Pitman NCA, Silva JNM, Martinez RV (2004a) Increasing biomass in Amazonian forest plots. Philos Trans R Soc London B 359:353–365

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WG, Lewis S, Lloyd J, Monteagudo A, Neill DA, Patiño S, Pitman NCA, Silva JMN, Martines RV (2004b) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Chang Biol 10:545–562

    Article  Google Scholar 

  • Batterman SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224–227

    Article  CAS  PubMed  Google Scholar 

  • Berendse F, Aerts R (1987) Nitrogen use efficiency: a biologically meaningful definition? Funct Ecol 1:293–296

    Google Scholar 

  • Bond WJ (2010) Do nutrient-poor soils inhabit development of forests? A nutrient stock analysis. Plant Soil 334:47–60

    Article  CAS  Google Scholar 

  • Bridgham SD, Pastor J, McClaugherty CA, Richardson CJ (1995) Nutrient-use efficiency: a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina Peatlands. Am Nat 145:1–21

    Article  Google Scholar 

  • Bruijnzeel LA (1984) Immobilization of nutrients in plantation forest of Pinus merkusii and Agathis dammara growing on volcanic soils in central Java, Indonesia. In: Batchik AT, Pushparahja E (eds) Soils and nutrition of perennial crops. Malaysian Soil Science Society, Kuala Lumpur, pp 13–15

    Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of micelial systems of ectomicorrhizal roots with special reference to their role in forming interplant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443

    Article  Google Scholar 

  • Burnham CP (1989) Pedological processes and nutrient supply from parent material in tropical soils. In: Proctor J (ed) Mineral nutrients in tropical forests and Savanna ecosystems. Blackwell, Oxford, pp 27–42

    Google Scholar 

  • Carey EV, Brown S, Gillespie AJR, Lugo AE (1994) Tree mortality in mature lowland tropical moist and tropical lower montane moist forests of Venezuela. Biotropica 26:255–265

    Article  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol System 11:233–260

    Article  CAS  Google Scholar 

  • Chave J, Riera B, Bubois M (2001) Estimation of biomass in a Neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17:79–96

    Article  Google Scholar 

  • Cintra BBL, Schietti J, Emillio T, Martins D, Moulatlet G, Souza P, Levis C, Quesada CA, Schöngart J (2013) Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus–Madeira interfluvial wetlands in Amazonia. Biogeosciences 10(11):7759–7774

    Article  Google Scholar 

  • Clark DA, Clark DB (2000) Landscape scale variation in forest structure and biomass in a tropical forest. For Ecol Manage 14:185–198

    Article  Google Scholar 

  • Clark DB, Clark DA, Read JM (1998) Edaphic variations and the mesoscale distribution of tree species in a Neotropical rainforest. J Ecol 86:101–112

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis S, Latty E, Fisher JV, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13(2):623–645

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5:680–691

    Article  CAS  Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503

    Article  PubMed  Google Scholar 

  • Cleveland CC, Townsend AR, Taylor P, Alvarez Clare S, Bustamante M, Chuyong G, Dobrowski S, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed S, Sierra CA, Silver W, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14(9):939–947

    Article  PubMed  Google Scholar 

  • Clinebell RR, Phillips OL, Gentry AH, Stark N, Zuuring H (1995) Prediction of Neotropical tree and liana species richness from soil and climatic data. Biodivers Conserv 4:56–90

    Article  Google Scholar 

  • Cochrane TT, Sanchez LG, Azevedo LG, de Porras JA and Garver CL (1985) Land in tropical America: guide to climate, landscapes, and soils for agronomists in Amazonia, the Andean Peidmont, Central Brazil in Orinoco, 3 vols. CIAT/EMBRAPA-CPAC

    Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424

    Article  Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    Article  CAS  Google Scholar 

  • Cuevas E, Medina E (1986) Nutrient dynamics within Amazonian forest ecosystems. Oecologia 68:466–472

    Article  Google Scholar 

  • Cuevas E, Medina E (1989) Patterns of nutrient accumulation and release in Amazonian forests of the upper Rio Negro basin. In: Proctor J (ed) Mineral nutrients in tropical forests and Savanna ecosystems. Blackwell, Oxford, pp 217–240

    Google Scholar 

  • Davidson EA, Martinelli LA (2009) Nutrient limitations to secondary forest regrowth. In: Keller M, Bustamante M, Gash J, Dias P (eds) Amazonia and global change, vol 186, Geophysical Monographs. American Geographical Union, Washington, DC, pp 299–310

    Chapter  Google Scholar 

  • Davidson EA, Ishida FY, Nepstad DC (2004) Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Chang Biol 10:718–730

    Article  Google Scholar 

  • Day TH (1959) Report for the reconnaissance soil survey of the Caete-Maracassume area. Stencilled report FAO/SPVEA Mission Belém (Brasil)

    Google Scholar 

  • Day TH (1961) Soil investigations conducted in the Lower Amazon valley. FAO, EPTA report 1395, Rome

    Google Scholar 

  • Day TH, Bennema J (1958) Report on an excursion to the Rio Gurupi. Typewritten FAO files, Rome

    Google Scholar 

  • Day TH, Santos WH (1958) Levantamento detalhado dos solos da Estação Experimental de São Salvador, Marajó. Stencilled report. Inst. Agron. do Norte and FAO/SPVEA Mission Belém (Brasil)

    Google Scholar 

  • Day TH, Bennema J, Santos WH (1964) British Guyana Soil Survey. Report UNSF/FAO Rome

    Google Scholar 

  • de Brito Neves BB (2002) Main stages of the development of the sedimentary basins of South America and their relationships with the tectonics of supercontinents. Gondwana Res 5:175–196

    Article  Google Scholar 

  • Dedecek RA, Bellote AFJ, Gava JL, Menegol O (2001) Site characterisation and the effects of harvesting on soil tillage on the productivity of Eucalyptus grandis plantations in Brazil. In: Kobayashi S, Turnbull JW, Toma T, Mori T, Majid NMNA (eds) Rehabilitation of degraded tropical forest ecosystems: workshop proceedings, 2–4 November 1999, CIFOR, Bogor, Indonesia, pp 157–164

    Google Scholar 

  • Denef K, Plante AF, Six J (2009) Characterization of soil organic matter. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, London, pp 91–126

    Google Scholar 

  • DeWalt SJ, Chave J (2004) Structure and biomass of four lowland Neotropical forests. Biotropica 36:7–19

    Google Scholar 

  • Dick DP, Gonçalves CN, Dalmolin RS, Knicker H, Klamt E, Kögel-Knabner I, Simões ML, Martin-Neto L (2005) Characteristics of soil organic matter of different Brazilian Ferralsols under native vegetation as a function of soil depth. Geoderma 124(3):319–333

    Article  CAS  Google Scholar 

  • Dietrich WE, Windsor DM, Dunne T (1996) Geology, climate and hydrology of Barro Colorado Island. In: Leigh EG, Rand AS, Windsor DM (eds) The ecology of a tropical rain forest: seasonal rhythms and long term changes, 2nd edn. Smithsonian Institution Press, Washington, DC, pp 101–108

    Google Scholar 

  • Emilio T, Quesada CA, Costa FRC, Magnusson WE, Schietti J, Feldpauschd TR, Brienen RJW, Baker TR, Chave J, Álvarez E, Araújo A, Bánki O, Castilho CV, Honorio E, Killeen T, Malhi Y, Oblitas Mendoza EM, Monteagudo A, Neill D, Parada GA, Peña-Cruz A, Ramirez-Angulo H, Schwarz M, Silveira M, ter Steege H, Terborgh JW, Thomas R, Torres-Lezama A, Vilanova E, Phillips OL (2014) Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecol Divers 1–2(7):215–229

    Article  Google Scholar 

  • Faber-Langendoen D, Gentry AH (1991) The structure and diversity of rain forests at Bajo Calima, Chocó Region, Western Colombia. Biotropica 23:2–11

    Article  Google Scholar 

  • Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJMM, Berry NJ, Bird M, Brondizio ES, de Camargo P, Chave J, Djagbletey G, Domingues TF, Drescher M, Fearnside PM, França MB, Fyllas NM, Lopez-Gonzalez G, Hladik A, Higuchi N, Hunter MO, Iida Y, Salim KA, Kassim AR, Keller M, Kemp J, King DA, Lovett JC, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Metcalfe DJ, Mitchard ETA, Moran EF, Nelson BW, Nilus R, Nogueira EM (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Article  Google Scholar 

  • Fromm J (2010) Wood formation of trees in relation to potassium and calcium nutrition. Tree Phys 30(9):1140–1147

    Article  CAS  Google Scholar 

  • Fyllas NM, Patino S, Baker TR, Nardoto GB, Martinelli L, Quesada CA, Paiva R, Schwartz M, Horna V, Mercado LM, Santos AJB, Arroyo L, Jimenez EM, Luizao FJ, Neil DA, Silva N, Prieto A, Rudas A, Silveira M, Vieira I, Lopez-Gonzalez G, Malhi Y, Phillips OL, Lloyd J (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708

    Article  Google Scholar 

  • Fyllas NM, Quesada CA, Lloyd J (2012) Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspect Plant Ecol Evol Syst 14:97–110

    Article  Google Scholar 

  • Gale N (2000) The relationship between canopy gaps and topography in a western Ecuadorian rain forest. Biotropica 32:653–661

    Article  Google Scholar 

  • Gale N, Barford AS (1999) Canopy tree mode of death in western Ecuadorian forests. J Trop Ecol 15:415–436

    Article  Google Scholar 

  • Gale N, Hall P (2001) Factors determining the mode of tree death in three Bornean rain forests. J Veg Sci 12(3):337–346

    Article  Google Scholar 

  • Gentry AH (1982) Patterns of tropical plant diversity. Evol Biol 15:1–84

    Google Scholar 

  • Gentry AH (1988) Tree species richness of upper Amazonian forests. Proc Nat Acad Sci U S A 85:156–159

    Article  CAS  Google Scholar 

  • Golley FB (1983) Nutrient cycling and nutrient conservation. In: Golley FB (ed) Tropical rain forest ecosystems. Elsevier, Amsterdam

    Google Scholar 

  • Golley FB (1986) Chemical plant-soil relationships in tropical forests. J Trop Ecol 2:219–229

    Article  Google Scholar 

  • Golley FB, Richardson T, Clements R (1978) Elemental concentrations in tropical forests and soils of north-western Colombia. Biotropica 10:144–151

    Article  Google Scholar 

  • Grubb PJ (1989) Mineral nutrients: a plant ecologist view. In: Proctor J (ed) Mineral nutrients in tropical forests and Savanna ecosystems. Blackwell, Oxford, pp 417–440

    Google Scholar 

  • Hase H, Foelster H (1983) Impact of plantation forestry with teak (Tectona grandis) on the nutrient status of young alluvial soils in West Venezuela. For Ecol Manage 6(1):33–57

    Article  Google Scholar 

  • Hedin LO, Brookshire EJ, Menge DN, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635

    Article  Google Scholar 

  • Herbert DA, Fownes JH (1995) P limitation on forest leaf area and net primary productivity on highly weathered tropical montane soils in Hawaii. Biogeochemistry 29:23–235

    Article  Google Scholar 

  • Herbert DA, Fownes JH, Vitousek PM (1999) Hurricane damage to Hawaiian forest: nutrient supply rate affects resistance and resilience. Ecology 80:908–920

    Article  Google Scholar 

  • Herrera R, Jordan CF, Klinge H, Medina E (1978a) Amazon ecosystems: their structure and functioning with particular emphasis on nutrients. Interciencia 3:223–232

    Google Scholar 

  • Herrera R, Merida T, Stark N, Jordan CF (1978b) Direct P transfer from leaf litter to roots. Naturwissenschaften 65:208–209

    Article  CAS  Google Scholar 

  • Higgins MA, Ruokolainen K, Tuomisto H, Llerena N, Cardenas G, Phillips OL, Vasquez R, Rasanen M (2011) Geological control of floristic composition in Amazonian forests. J Biogeogr 38:2136–2149

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hirai, K, Ferraz JBS, Kobayashi M, Ferreira SJF, Sales PC, Lopes MC, Hotta I (2003) Physical properties of the soils under degraded areas in the Central Amazon. In: Projeto Jacaranda Fase II: Pesquisas Florestais na Amazonia Central. CPST-INPA, Manaus, Brazil, pp 153–167

    Google Scholar 

  • Hiremath AJ, Ewel JJ (2001) Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems 4:669–682

    Article  CAS  Google Scholar 

  • Hoorn C, Wesselingh FP (2010) Amazonia: landscape and species evolution. Wiley-Blackwell, Chichester

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330(6006):927–931

    Article  CAS  PubMed  Google Scholar 

  • Huston M (1980) Soil nutrients and tree species richness in Costa Rican forests. J Biogeogr 7:147–157

    Article  Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci U S A 104:864–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AH, Frizano J, Vann DR (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135:487–499

    Article  PubMed  Google Scholar 

  • Jordan CF (1979) Stem flow and nutrient transfer in a tropical rain forest. Oikos 31:255–268

    Google Scholar 

  • Jordan CF (1982) The nutrient balance of an Amazonian rain forest. Ecology 63:647–654

    Article  CAS  Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. Wiley, Chichester

    Google Scholar 

  • Jordan CF (1989) Are process rates higher in tropical forest ecosystems? In: Proctor J (ed) Mineral nutrients in tropical forests and Savanna ecosystems. Blackwell, Oxford, pp 205–216

    Google Scholar 

  • Jordan CF, Escalante G (1980) Root productivity in an Amazonian rain forest. Ecology 61:14–18

    Article  Google Scholar 

  • Jordan CF, Herrera R (1981) Tropical rain forests: are nutrients really critical? Am Nat 117:167–180

    Article  CAS  Google Scholar 

  • Jordan CF, Stark N (1978) Retencion de nutrients en la estera de raices de un bosque pluvial Amazonico. Acta Cient Venezoelana 29:263–267

    Google Scholar 

  • Keeling HC, Baker TR, Martinez RV, Monteagudo A, Phillips OL (2008) Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests. Oecologia 158(3):521–534

    Article  PubMed  Google Scholar 

  • Kellman M, Carty A (1986) Magnitude of nutrient influxes from atmospheric sources to a Central America Pinnus caribea woodland. J Appl Ecol 23:211–226

    Article  Google Scholar 

  • Kitayama K, Majalap-Lee N, Aiba SI (2000) Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rain forests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia 123:342–349

    Article  Google Scholar 

  • Kitayama K, Aiba SI, Takyu M, Majalap N, Wagai R (2004) Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podozolizatio. Ecosystems 7:259–274

    Article  CAS  Google Scholar 

  • Kroonenberg SB, Roever EWF (2010) Geological evolution of the Amazonian Craton. In: Hoorn C, Wesselingh FP (eds) Amazonia: landscape and species evolution. Wiley-Blackwell, Chichester, pp 9–28

    Google Scholar 

  • Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy T, Merona JR, Chambers JQ, Gascon C (1999) Relationship between soils and Amazon forest biomass: a landscape study. For EcolManage 118:127–138

    Google Scholar 

  • Lieberman D, Lieberman M (1987) Forest tree growth and dynamics at La Selva, Costa Rica (1969-1982). J Trop Ecol 3:347–369

    Article  Google Scholar 

  • Lloyd J, Bird MI, Veenendaal EM, Kruijt B (2001) Should phosphorus availability be constraining moist tropical forest responses to increasing CO2 concentrations? In: Schulze ED, Harrison SP, Heimann M, Holland EA, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, CA, pp 96–114

    Google Scholar 

  • Luizão FJ, Fernside P, Cerri CEP, Lehmann J (2009) The maintenance of soil fertility in Amazonian managed systems. In: Keller M, Bustamante M, Gash J, Dias P (eds) Amazonia and global change, vol 186, Geophysical Monographs. American Geographical Union, Washington, DC, pp 311–336

    Chapter  Google Scholar 

  • Malhi Y, Baker T, Phillips OL, Almeida S, Alvares E, Arroyo L, Chave J, Czimczik C, Di Fiore A, Higuchi N, Killeen T, Laurance SG, Laurance WF, Lewis S, Montoya LMM, Monteagudo A, Neill D, Nunes Vargas P, Panfil SN, Patino S, Pitman N, Quesada CA, Salomao R, Silva N, Lezama AT, Vasquez Martinez R, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:1–29

    Article  Google Scholar 

  • Malhi J, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Núñez Vargas P, Pitman NCA, Quesada CA, Salomão R, Silva JNM, Torres Lezama A, Terborgh J, Vásquez Martínez R, Vinceti B (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Chang Biol 12:1107–1138

    Article  Google Scholar 

  • Marbut CF, Manifold CB (1926) The soils of the Amazon basin in relation to their agricultural possibilities. Geogr Rev 15:617–643

    Article  Google Scholar 

  • Marrs RH, Thompson J, Scott D, Proctor J (1991) Nitrogen mineralization and nitrification in terra firme forests and savanna soils in ilha de Maraca, Roraima. Braz J Trop Ecol 7:123–137

    Article  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Martins DL, Schietti J, Feldpausch T, Luizão FJ, Phillips OL, Andrade A, Castilho C, Laurance SG, Oliveira A, Amaral IL, Toledo JJ, Lugli LF, Pinto JLPV, Oblitas Mendoza EM, Quesada CA (2014) Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia. Plant Ecol Divers, accepted manuscript. doi:10.1080/17550874.2013.879942#_blank

    Google Scholar 

  • McGrath DA, Smith CK, Gholz HL, Oliveira FA (2001) Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems 4:625–645

    Article  CAS  Google Scholar 

  • McGroddy ME, Silver WL, Cosme de Oliveira R Jr (2004) The effect of phosphorus availability on decomposition dynamics in a seasonal lowland Amazonian forest. Ecosystems 7:172–179

    Article  CAS  Google Scholar 

  • Medina E, Delgado M, Troughton JH, Medina JD (1977) Physiological ecology of CO2 fixation in Bromeliaceae. Flora 166:137–152

    CAS  Google Scholar 

  • Medina E, Sobrado M, Herrera R (1978) Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation. Radiat Environ Biophys 15:131–140

    Article  CAS  PubMed  Google Scholar 

  • Mirmanto E, Proctor J, Green J, Nagy L, Suriantata (1999) Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos Trans R Soc London B Biol Sci 354:1825–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosse B, Hayman DS, Arnold DJ (1973) Plant growth responses to VA micorrhizas. New Phytol 72:809–815

    Article  CAS  Google Scholar 

  • Nardoto GB, Quesada CA, Patiño S, Saiz G, Baker TR, Schwarz M, Schrodt F, Feldpausch TR, Domingues TF, Marimon BS, Marimon Junior BH, Vieira I, Silveira M, Bird MI, Phillips OL, Lloyd J, Martinelli LA (2014) Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N/14N measurements. Plant Ecol Divers. doi: 10.1080/17550874.2013.807524

    Google Scholar 

  • Nykvist N (1998) Logging can cause a serious lack of calcium in tropical rainforest ecosystems: an example from Sabah, Malaysia. In: Schulte A, Ruhiyat D (eds) Soils of tropical forest ecosystems. Springer, Berlin, pp 87–91

    Chapter  Google Scholar 

  • Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems 10:503–518

    Article  CAS  Google Scholar 

  • Paoli GD, Curran LM, Slik JWF (2007) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287–299

    Article  PubMed  Google Scholar 

  • Peltzer DA, Wardle DA, Allison VJ, Baisden T, Bardgett RD, Chadwick OA, Condron L, Parfitt RL, Porder S, Richardson SJ (2010) Understanding ecosystem retrogression. Ecol Monogr 80(4):509–529

    Article  Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nuñez VP, Vásquez MR, Laurance SG, Ferriera LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  CAS  PubMed  Google Scholar 

  • Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MC, Sanchez WG, Yli-Halla M, Rose S (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775

    Article  Google Scholar 

  • Phillips OL, Baker T, Arroyo L, Higuchi N, Killeen T, Laurance WF, Lewis SL, Lloyd J, Malhi Y, Monteagudo A, Neill D, Núñez Vargas P, Silva N, Terborgh J, Vásquez Martínez R, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, Di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patiño S, Pitman N, Quesada CA, Saldias M, Torres Lezama A, Vinceti B (2004) Patterns and process in Amazon tree turnover, 1976-2001. Philos Trans R Soc Lond B 359:437–462

    Article  Google Scholar 

  • Pitman NCA, Mogollón H, Dávila N, Ríos M, García-Villacorta R, Guevara J, Baker TR, Monteagudo A, Phillips OL, Vásquez-Martinez R, Ahuite M, Aulestia M, Cardenas D, Ceron CE, Loizeau PA, Neill DA, Núñez VP, Palacios WA, Spichiger R, Valderrama E (2008) Tree community change across 700 km of lowland Amazonian forest from the Andean foothills to Brazil. Biotropica 40:525–535

    Article  Google Scholar 

  • Proctor J, Anderson JM, Chai P, Vallack HW (1983) Ecological studies in four contrasting lowland rainforests in Gunung Mulu National Park Sarawak. J Ecol 71:237–260

    Article  Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M, Patino S, Baker TR, Czimczik CI, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizao FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes Filho JO, Carvalho FP, Araujo Filho RN, Chaves JE, Cruz Junior OF, Pimentel TP, Paiva R (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541

    Article  CAS  Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440

    Article  CAS  Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, Di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, López-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vasquez-Martínez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    Article  Google Scholar 

  • Quiquampoix H, Mousain D (2005) Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 89–112

    Chapter  Google Scholar 

  • Raaimakers D, Boot RGA, Dijkstra P, Pot S (1995) Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees. Oecologia 102:120–125

    Article  Google Scholar 

  • RADAMBRASIL (1978) Levantamento dos Recursos Naturais. Ministério de Minas e Energia, Departamento Nacional de Produção Mineral, Rio de Janeiro

    Google Scholar 

  • Raich JW, Russel AE, Crews TE, Farrington H, Vitousek P (1996) Both N and P limit plant production on young Hawaiian lava flows. Biogeochemistry 32:1–14

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Uhl C (1995) Leaf carbon and nutrient assimilation and conservation in species of different successional status in an oligotrophic Amazonian forest. Funct Ecol 9:65–76

    Article  Google Scholar 

  • Richter DD, Babbar LI (1991) Soil diversity in the tropics. Adv Ecol Res 21:315–389

    Article  Google Scholar 

  • Roggy JC, Prevost MF, Garbaye J, Domenach AM (1999) Nitrogen cycling in the tropical rainforest of French Guiana: comparison of two sites with contrasting soil types 15N. J Trop Ecol 15:1–22

    Article  Google Scholar 

  • Ruokolainen K, Tuomisto H, Macia MJ, Higgins MA, Yli-Halla M (2007) Are floristic and edaphic patterns in Amazonian rain forests congruent for trees, pteridophytes and Melastomataceae? J Trop Ecol 23:13–25

    Article  Google Scholar 

  • Saidy AR, Smernik RJ, Baldock JA, Kaiser K, Sanderman J, Macdonald LM (2012) Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173:104–110

    Article  CAS  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. John Wiley, New York, NY, 618pp

    Google Scholar 

  • Sanchez PA (1987) Soil productivity and sustainability in Agroforestry systems. In: Steppler HA, Nair PKR (eds) Agroforestry: a decade of development. International Council for Research in Agroforestry, Nairobi, pp 205–223

    Google Scholar 

  • Sanchez PA, Buol SW (1975) Properties of some soils of the upper Amazon Basin of Peru. Soil Sci Soc Am J 38:117–121

    Article  Google Scholar 

  • Schoenholtz SH, Van Miegroet H, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manage 138:335–356

    Article  Google Scholar 

  • Schurz WL, Hargis OD (1923) Rubber production in the Amazon Valley. The Crude Rubber Survey, US Department of Commerce

    Google Scholar 

  • Silver WL (1994) Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98:336–343

    Article  Google Scholar 

  • Small E (1972) Photosynthetic rates in relation to N recycling as adaptations to nutrient deficiency in bog peat plants. Can J Bot 50:2227–2233

    Article  CAS  Google Scholar 

  • Smith K, Gholz HL, de Assis Oliveira F (1998) Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. For Ecol Manag 109:209–220

    Article  Google Scholar 

  • Sollins P (1998) Factors influencing species composition in tropical lowland rainforest: does soil matter? Ecology 79:23–30

    Article  Google Scholar 

  • Sombroek WG (1966) A reconnaissance of the soils of the Brazilian Amazon region. Centre for Agricultural Publications and Documentation, Wageningen

    Google Scholar 

  • Sombroek WG (1984) Soils of the Amazon Region. In: Sioli H (ed) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Junk, Dordrecht, pp 521–535

    Chapter  Google Scholar 

  • Sombroek WG (2000) Amazon landforms and soils in relation to biological diversity. Acta Amazonica 30:81–100

    Article  Google Scholar 

  • Spangenberg A, Grimm U, Sepeda da Silva J, Fölster H (1996) Nutrient store and export rates of Eucalyptus urograndis plantations in eastern Amazonia (Jari). For Ecol Manage 80(1):225–234

    Article  Google Scholar 

  • Stark N (1970) The nutrient content of plants and soils from Brazil and Suriname. Biotropica 2:51–60

    Article  CAS  Google Scholar 

  • Stark N (1971a) Nutrient cycling I nutrient distribution in some Amazonian soils. Trop Ecol 12:24–50

    Google Scholar 

  • Stark N (1971b) Nutrient cycling II nutrient distribution in Amazonian vegetation. Trop Ecol 12:177–201

    Google Scholar 

  • Stark N, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian forest. Ecology 59:434–437

    Article  CAS  Google Scholar 

  • Stephenson N, Van Mantgen PJ (2005) Forest turnover rates follow global and regional patterns of productivity. Ecol Lett 8:524–531

    Article  PubMed  Google Scholar 

  • Sugden AM, Tanner EVJ, Kapos V (1985) Regeneration following clearing in a Jamaican montane forest: results of a ten year study. J Trop Ecol 1:329–351

    Article  Google Scholar 

  • Tanner EVJ, Kapos V, Freskos S, Healey J, Theobold AM (1990) N and P fertilization of Jamaican montane forest. J Trop Ecol 6:231–238

    Article  Google Scholar 

  • Tanner EVJ, Kapos V, Franco W (1992) N and P fertilization on Venezuelan montane forest trunk growth and litterfall. Ecology 73:78–86

    Article  Google Scholar 

  • Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of growth on wet tropical mountains. Ecology 79:10–22

    Article  Google Scholar 

  • Telles ECC, Camargo PB, Martinelli LA, Trumbore SE, Costa ES, Santos J, Higuchi N, Oliveira RC Jr (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochem Cycles 17(2):1040. doi:10.1029/2002GB001953

    Article  CAS  Google Scholar 

  • ter Steege H, Pitman N, Sabatier D, Castellanos H (2003) A spatial model of tree α-diversity and tree density for the Amazon. Biodivers Conserv 12:2255–2277

    Article  Google Scholar 

  • ter Steege H, Pitman N, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prévost MF, Spichiger R, Castellanos H, von Hildebrand P, Vásquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  PubMed  CAS  Google Scholar 

  • ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE et al (2013) Hyperdominance in the Amazonian tree flora. Science 342(6156):1243092

    Article  PubMed  CAS  Google Scholar 

  • Thomas MF (1974) Tropical geomorphology. McMillan, London, 331pp

    Google Scholar 

  • Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785. doi:10.1038/371783a0

    Article  CAS  Google Scholar 

  • Trumbore S, Camargo PB (2009) Soil carbon dynamics. In: Keller M, Bustamante M, Gash J, Dias P (eds) Amazonia and global change, vol 186, Geophysical Monographs. American Geographical Union, Washington, DC, pp 451–465

    Chapter  Google Scholar 

  • Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science 269:63–66

    Article  CAS  PubMed  Google Scholar 

  • Tuomisto H, Poulsen AD, Ruokolainen K, Moran RC, Quintana C, Celi J, Canas G (2003) Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecol Appl 13:352–371

    Article  Google Scholar 

  • Van Wambeke A (1992) Soils of the tropics—properties and appraisal. McGraw-Hill, New York, NY

    Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  CAS  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Princeton, NJ, 223pp

    Google Scholar 

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75

    Article  CAS  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57–58:1–45

    Article  Google Scholar 

  • Vonhof HB, Kaandorp RJG (2010) Climate variations in Amazonia during the neogene and the quaternary. In: Hoorn C, Wesselingh FP (eds) Amazonia: landscape and species evolution. Wiley-Blackwell, Chichester, pp 201–210

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Walker L, Zimmerman JK, Lodge DJ, Grajales SG (1996) An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico. J Ecol 84:77–89

    Article  Google Scholar 

  • Wallace (1853) A narrative of travels on the Amazon and Rio Negro, with an account of the native tribes, and observations on the climate, geology and natural history of the Amazon Valley, 2nd edn. Haskell House, London

    Google Scholar 

  • Wattel-Koekkoek EJW, Buurman P, Van Der Plicht J, Wattel E, Van Breemen N (2003) Mean residence time of soil organic matter associated with kaolinite and smectite. Eur J Soil Sci 54(2):269–278

    Article  Google Scholar 

  • Went FW, Stark N (1968) Micorrhiza. Bioscience 18:1035–1039

    Article  Google Scholar 

  • Whittingham J, Read DJ (1982) Vesicular-arbuscular micorrhiza in natural vegetation systems. III. Nutrient transfer between plants with mycorrhizal interconnections. New Phytol 90:277–284

    Article  CAS  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EV, Sayer EJ, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92(8):1616–1625

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Quesada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quesada, C.A., Lloyd, J. (2016). Soil–Vegetation Interactions in Amazonia. In: Nagy, L., Forsberg, B., Artaxo, P. (eds) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49902-3_12

Download citation

Publish with us

Policies and ethics