Skip to main content

Die Zelle als metabolisches System

  • Chapter
  • First Online:
Pflanzenphysiologie
  • 13k Accesses

Zusammenfassung

Lebendige Systeme sind in ständiger Umsetzung befindliche Systeme. Die Moleküle und Molekülaggregate (Feinstrukturen), die eine Zelle aufbauen, haben eine Lebensdauer, die meist sehr viel kürzer ist als die der Zelle. Der beständige Aufbau und Abbau (Umsatz, turnover), der in einem stationären System durch Fließgleichgewichte beschrieben werden kann, macht die Zelle zu einem stofflich hochgradig dynamischen Gebilde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Baiges I, Schäffner AR, Affenzeller MJ, Mas A (2002) Special review issue on signal transduction. Plant Cell 14: S1–S417

    Google Scholar 

  • Baiges I, Schäffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115: 175–182

    Google Scholar 

  • Becraft PW (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18: 163–192

    Google Scholar 

  • Blatt MR (ed) (2004) Membrane transport in plants. Annu Plant Rev Vol 15, Blackwell, Oxford

    Google Scholar 

  • Boyer JS (1985) Water transport. Annu Rev Plant Physiol 36: 473–516

    Google Scholar 

  • Bunney TD, van den Wijngaard PWJ, de Boer AH (2002) 14-3-3 protein regulation of proton pumps and ion channels. Plant Mol Biol 50: 1041–1051

    Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99: 787–822

    Google Scholar 

  • Dugal BS (1973) Allosterie und Cooperativität bei Enzymen des Zellstoffwechsels. Biologie in unserer Zeit 3: 41–49

    Google Scholar 

  • Gaxiola R, Palmgren MG, Schuhmacher K (2007) Plant proton pumps. FEBS Letters 581: 2204–2214

    Google Scholar 

  • Grefen C,Harter K (2004) Plant two-component systems: Principles, functions, complexity and cross talk. Planta 219: 733–742

    Google Scholar 

  • Hardie DG (1999) Plant protein serine/threonine kinases: Classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50: 97–131

    Google Scholar 

  • Harold FM (1986) The vital force: A study of bioenergetics. Freeman, New York

    Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40: 539–569

    Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55: 401–427

    Google Scholar 

  • Ingvardsen C, Veierskov B (2001) Ubiquitin- and proteasomedependent proteolysis in plants. Physiol Plant 112: 451–459

    Google Scholar 

  • Kruger NJ,Hill SA, Ratcliffe RG (eds) (1999) Regulation of primary metabolic pathways in plants. Kluwer, Dordrecht

    Google Scholar 

  • Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58: 35–47

    Google Scholar 

  • Lüttge U, Higinbotham N (1979) Transports in plants. Springer, Berlin

    Google Scholar 

  • Malhó R (1999) Coding information in plant cells: The multiple roles of Ca2+ as a second messenger. Plant Biol 1: 487–494

    Google Scholar 

  • Matile P (1987) The sap of plant cells. New Phytol 105: 1–26

    Google Scholar 

  • Morris JG (1976) Physikalische Chemie für Biologen. Verlag Chemie,Weinheim

    Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita Jr K (1997) Direct observation of the rotation of F1-ATPase. Nature 386: 299–302

    Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake.Annu Rev Plant Physiol Plant Mol Biol 52: 817–845

    Google Scholar 

  • Scheel D, Wasternack C (2002) Plant signal transduction. Oxford University Press, Oxford

    Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55: 555–590

    Google Scholar 

  • Smallwood M, Knox JP, Bowles D (eds) (1996) Membranes: Specialized functions in plants. Bios Sci, Oxford

    Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136: 2475–2482

    Google Scholar 

  • Tester M (1990) Plant ion channels: Whole-cell and singlechannel studies. New Phytol 114: 305–340

    Google Scholar 

  • Ward JM (1997) Patch-clamping and other molecular approaches for the study of plasma membrane transporters demystified. Plant Physiol 114: 1151–1159

    Google Scholar 

  • Yasuda R, Noji H, Yoshida M, Kinosita K, Itoh H (2001) Resolution of distinct rotational substeps by millisecond kinetic analysis of F1-ATPase. Nature 410: 898–904

    Google Scholar 

In Abbildungen und Tabellen zitierte Literatur

  • Elzam IE, Rains DW, Epstein E (1964) Biochem Biophys Res Comm 15: 273–276

    Google Scholar 

  • Gray CJ (1971) Enzyme-catalyzed reactions. Van Nostrand Reinhold, London

    Google Scholar 

  • Hedrich R, Schroeder JI (1989) Annu Rev Plant Physiol Plant Mol Biol 40: 539–569

    Google Scholar 

  • Higinbotham N (1973) Bot Rev 39: 15–69

    Google Scholar 

  • Hoagland DR, Davis AR (1929) Protoplasma 6: 610–626

    Google Scholar 

  • Kagawa Y, Sone N, Hirata H, Yoshida M (1979) J Bioenerg Biomembr 11: 39–78

    Google Scholar 

  • Kochian LV, Lucas WJ (1982) Plant Physiol 70: 1723–1731

    Google Scholar 

  • Lohrmann J, Harter K (2002) Plant Physiol 128: 363–369

    Google Scholar 

  • Lüttge U (1973) Stofftransport der Pflanzen. Springer, Berlin

    Google Scholar 

  • McCarty RE, Evron Y, Johnson EA (2000) Annu Rev Plant Physiol Plant Mol Biol 51: 83–109

    Google Scholar 

  • Osmond CB, Lüttge U, West KR, Pallaghy CK, Sacher-Hill B (1969) Aust J Biol Sci 22: 797–814

    Google Scholar 

  • Robertson RN, Turner JS (1945) Aus J Exp Biol Med Sci 23: 64– 73

    Google Scholar 

  • Schumacher W (1962) In: Lehrbuch der Botanik (Strasburger et al.) 28. Aufl. Fischer, Stuttgart

    Google Scholar 

  • Tong WF (1975) Dissertation, Universität Freiburg

    Google Scholar 

  • Ullrich WR, Novacky A (1981) Plant Sci Lett 22: 211–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schopfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schopfer, P., Brennicke, A. (2010). Die Zelle als metabolisches System. In: Pflanzenphysiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49880-4_4

Download citation

Publish with us

Policies and ethics