Skip to main content

Blütenbildung und Befruchtung

  • Chapter
  • First Online:
Pflanzenphysiologie
  • 13k Accesses

Zusammenfassung

Die Ausbildung von Blüten markiert bei den höheren Pflanzen die Umsteuerung von der vegetativen zur generativen Entwicklung, die Bildung von Blütenorganen anstelle von vegetativen Blattorganen, die schließlich zur Produktion von Nachkommen führt. Dieser Schritt wird in vielen Pflanzen durch bestimmte Umweltfaktoren angestoßen, z. B. durch die Tageslänge oder durch Kälteperioden, und damit in eine bestimmte Jahreszeit gelegt. Die Umsteuerung ist in der Regel irreversibel und setzt ein weitgehend von Umwelteinflüssen abgeschirmtes Programm genetisch gesteuerter Prozesse in Gang, das in den letzten Jahren mit Hilfe von Mutantenstudien in groben Zügen aufgeklärt werden konnte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Boland W (2004) Plant reproduction. Supplement Plant Cell 16: S1–S169

    Google Scholar 

  • Boland W (1987) Chemische Kommunikation bei der sexuellen Fortpflanzung mariner Blaualgen. Biologie in unserer Zeit 17: 176–185

    Google Scholar 

  • Bastow R, Dean C (2003) Deciding when to flower. Science 302: 1695–1697

    Google Scholar 

  • Correns C (1909) Vererbungsversuche mit blass(gelb)grünen und buntblättrigen Sippen bei Mirabilis,Urtica und Lunaria. Z Abst u Vererbungsl 1: 291–329

    Google Scholar 

  • De Bodt S, Raes J, Van de Peer Y, Theißen G (2003) And then there were many: MADS goes genomic. Trends Plant Sci 8: 475–483

    Google Scholar 

  • Dodds PN, Clarke AE, Newbigin E (1996) A molecular perspective on pollination in flowering plants. Cell 85: 141–144

    Google Scholar 

  • Fornara F, Coupland G (2009) Plant phase transitions make a SPLash. Cell 138: 625–627

    Google Scholar 

  • Franklin-Tong N, Franklin FCH (2003) Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci 8: 598–605

    Google Scholar 

  • Giakountis A, Coupland G (2008) Phloem transport of flowering signals. Curr Opin Plant Biol 11: 687–694

    Google Scholar 

  • Hyama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering response of Arabidopsis and rice. Plant Physiol 135: 677–684

    Google Scholar 

  • Hiscock SJ, Kües U, Dickinson HG (1996) Molecular mechanisms of self-incompatibility in flowering plants and fungi – different means to the same end. Trends Cell Biol 6: 421–427

    Google Scholar 

  • Hiscock SJ, McInnis J (2003) Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci 8: 606–613

    Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302–306

    Google Scholar 

  • Jackson SD (2009) Plant responses to photoperiod.New Phytol 181: 517–531

    Google Scholar 

  • Johnson MA, Preuss D (2003) On your mark, get set, GROW! LePRK2-LAT52 interactions regulate pollen tube growth. Trends Plant Sci 8: 97–99

    Google Scholar 

  • Jürgens G (1997) Memorizing the floral ABC. Nature 386: 17

    Google Scholar 

  • Klejnot J, Lin C (2004) A CONSTANS experience brought to light. Science 303: 965–966

    Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55: 521–535

    Google Scholar 

  • Lagercranz U (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? J Exp Bot 60: 2501–2515

    Google Scholar 

  • Laubinger S et al. (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133: 3213–3222

    Google Scholar 

  • Levings CS (1990) The Texas cytoplasm of maize: Cytoplasmic male sterility and disease susceptibility. Science 150: 942–947

    Google Scholar 

  • Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307: 573–576

    Google Scholar 

  • McCubbin AG (2005) Lessons on signalling in plant selfincompatibility systems. In: Fleming AJ (ed) Intercellular communication in plants. Annu Plant Rev Vol 16, Blackwell, Oxford, pp 240–275

    Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12: 75–80

    Google Scholar 

  • Schwarz-Sommer Z et al. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936

    Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta Stone of flowering time? Science 296: 285–289

    Google Scholar 

  • Sung S, Amasino RM (2005) Rembering winter: Toward a molecular understanding of vernalization. Annu Rev Plant Biol 56: 491–508

    Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56: 467–489

    Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48: 461–491

    Google Scholar 

  • Waffenschmidt S, Jaenicke L (1991) Glykoproteine und Pflanzen- Zellkommunikation. Chemie in unserer Zeit 25: 29–43

    Google Scholar 

  • Weigel D, Jürgens G (2002) Stem cells that make stems. Nature 415: 751–754

    Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303: 1640–1644

    Google Scholar 

  • Zhang Y, Zhao Z,Xue Y (2009) Roles of proteolysis in plant selfincompatibility. Annu Rev Plant Biol 60: 21–42

    Google Scholar 

In Abbildungen und Tabellen zitierte Literatur

  • Baum DA (1998) Curr Opin Plant Biol 1: 79–86

    Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Science 275: 80–83

    Google Scholar 

  • Bünning E (1953) Entwicklungs- und Bewegungsphysiologie der Pflanze. Springer, Berlin

    Google Scholar 

  • Casal JJ, Fankhauser C, Coupland G, Blázquez MA (2004) Trends Plant Sci 9: 309–313

    Google Scholar 

  • Chailakhyan MK (1937) Hormonal theory of plant development. Akad Naukk SSSR, Moscow

    Google Scholar 

  • Cumming BG, Hendricks SB, Borthwick HA (1965) Can J Bot 43: 825–853

    Google Scholar 

  • Dodds PN, Clarke AE, Newbigin E (1996) Cell 85: 141–144

    Google Scholar 

  • Hart JW (1988) Light and plant growth. Unwin Hyman, London

    Google Scholar 

  • Hendricks SB, Siegelman HW (1967) In: Florkin M, Stotz EH (eds) Comprehensive biochemistry,Vol XXVII. Elsevier,Amsterdam, pp 211–235

    Google Scholar 

  • Jaenicke L (1975) Chemie in unserer Zeit 9: 50–58

    Google Scholar 

  • Kühn A (1995) Vorlesungen über Entwicklungsphysiologie. Springer, Berlin

    Google Scholar 

  • Lang A (1957) Proc Natl Acad Sci USA 43: 709–717

    Google Scholar 

  • Leins P,Metzenauer G (1979) Bot Jahrb Syst 100: 542–554

    Google Scholar 

  • Linskens HF (1969) In:Metz CB,Monroy A (eds) Fertilization. Academic Press, New York, pp 189–253

    Google Scholar 

  • Ma H (1997) The on and off of floral regulatory genes. Cell 89: 821–824

    Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Bacic A, Clarke AE (1990) Austr J Plant Physiol 17: 345–353

    Google Scholar 

  • Meyerowitz EM (1994) Sci Amer 271 November: 40–47

    Google Scholar 

  • Müller DG (1972) Ber Deutsch Bot Ges 85: 363–369

    Google Scholar 

  • Oltmanns F (1899) Flora Allg Bot Ztg 86: 86–99

    Google Scholar 

  • Running MP (1997) Curr Biol 7: 89–91

    Google Scholar 

  • Smyth DR (1995) Curr Biol 5: 361–363

    Google Scholar 

  • Went FW (1944) Amer J Bot 31: 135–150

    Google Scholar 

  • Vince-Prue D (1975) Photoperiodism in plants. McGraw-Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schopfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schopfer, P., Brennicke, A. (2010). Blütenbildung und Befruchtung. In: Pflanzenphysiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49880-4_22

Download citation

Publish with us

Policies and ethics