Skip to main content

Stoffwechsel von Wasser und anorganischen Ionen

  • Chapter
  • First Online:
Pflanzenphysiologie
  • 13k Accesses

Zusammenfassung

Neben den aus der Atmosphäre zur Verfügung stehenden Elementen Kohlenstoff (als CO2) und Sauerstoff (als O2) benötigt der pflanzliche Stoffwechsel mindestens 15 weitere Elemente, die in Form von Wasser (H2O) und den darin gelösten anorganischen Nährstoffen (mineralische Nährsalze) aufgenommen werden müssen. Aufgrund ihres unterschiedlichen Bedarfs im Stoffwechsel unterscheidet man zwischen Makroelementen (neben C, H, O: N, S, P, K, Cu, Mg) und Mikroelementen (Fe, Cl, B, Mn, Zn, Cu, Mo, Ni). Eine wässrige Lösung, die diese essenziellen Nährelemente (in der Regel in Form anorganischer Ionen) in ausgewogenen Konzentrationen enthält, kann als Nährlösung im Prinzip alle mineralischen Bedürfnisse der Pflanze befriedigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • BassiriRad H (ed) (2005) Nutrient acquisition by plants – an ecological perspective. Springer, Berlin

    Google Scholar 

  • Blevius DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49: 481–500

    Google Scholar 

  • Cobbett C, Goldbrough P (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53: 159–182

    Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3: 389–395

    Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and functions of proteoid roots and other root clusters. Bot Acta 108: 183–200

    Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: Structure, function and responses to the environment. J Plant Growth Regul 21: 335–351

    Google Scholar 

  • Grossmann A, Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Physiol Plant Mol Biol 52: 163–210

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53: 1–11

    Google Scholar 

  • Hänsch R,Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn,Mn, Fe,Ni,Mo, B, Cl).Curr Opin Plant Biol 12: 259–266

    Google Scholar 

  • Kirkham MB (2005) Principles of soil and water relations. Elsevier, Amsterdam

    Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphoros efficiency. Annu Rev Plant Biol 55: 459–493

    Google Scholar 

  • Lösch R (2003) Wasserhaushalt der Pflanzen. 2. Aufl, Quelle & Mayer,Wiebelsheim

    Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12: 250–258

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2. ed, Academic Press, London

    Google Scholar 

  • McCully ME (1999) Roots in soil: Unearthing the complexities of roots and their rhizospheres.Annu Rev Plant Physiol Plant Mol Biol 50: 695–718

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. 5. ed, Kluwer, Dordrecht

    Google Scholar 

  • Neumann G, Martiwoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trends Plant Sci 7: 162–167

    Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology. 3. ed, Elsevier, Academic Press, San Diego

    Google Scholar 

  • Pinton R,Varanini Z,Nannipieri P (eds) (2001) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Dekker, New York

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots.Annu Rev Plant Physiol Plant Mol Biol 52: 527–560

    Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149: 167–192

    Google Scholar 

  • Thomson WW, Faraday CD, Oross JW (1988) Salt glands. In: Baker DA,Hall JL (eds) Solute transport in plant cells and tissues. Longman, Harlow, pp 498–537

    Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (eds) (1996) Plant roots: The hidden half, 2. ed, Dekker, New York

    Google Scholar 

In Abbildungen und Tabellen zitierte Literatur

  • Boyer JS (1970) Plant Physiol 46: 233–235

    Google Scholar 

  • Claassen N, Jungk A (1982) Z Pflanzenernähr Bodenk 145: 513–525

    Google Scholar 

  • Dinkelaker B, Röhmheld V,Marschner H (1989) Plant Cell Environ 12: 285–292

    Google Scholar 

  • Epstein E (1965) In: Bonner J,Varner JE (eds) Plant biochemistry. Academic Press, New York, pp 438–466

    Google Scholar 

  • Epstein E (2005) Mineral nutrition of plants: Principles and perspectives. 2. ed, Sinauer, Sunderland

    Google Scholar 

  • Grill E, Zenk MH (1989) Chemie in unserer Zeit 23: 193–199

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular 347, Calif Agr Exp Station, Berkeley

    Google Scholar 

  • Ma JF, Nomoto K (1996) Physiol Plant 97: 609–617

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants.Academic Press, London

    Google Scholar 

  • Meidner H, Sheriff DW (1976) Water and plants. Blackie, Glasgow

    Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology. 3. ed, Elsevier, Academic Press, San Diego

    Google Scholar 

  • Radin JW, Ackerson RC (1981) Plant Physiol 67: 115–119

    Google Scholar 

  • Ruhland W (1915) Jahrbuch Wiss Bot 55: 408–498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schopfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schopfer, P., Brennicke, A. (2010). Stoffwechsel von Wasser und anorganischen Ionen. In: Pflanzenphysiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49880-4_12

Download citation

Publish with us

Policies and ethics