Advertisement

The Genus Desulfitobacterium

  • Taiki FutagamiEmail author
  • Kensuke Furukawa
Chapter

Abstract

To date, 22 Desulfitobacterium strains have been isolated. From them a total of six distinct species have been proposed: D. hafniense, D. dehalogenans, D. chlororespirans, D. metallireducens, D. dichloroeliminans, and D. aromaticivorans. The isolated strains are strictly anaerobic, mesophilic, and grow in the neutral pH range. The cells are slightly curved rods ranging from 2 to 7 μm in length and 0.3 to 1 μm in width. Most of the Desulfitobacterium strains have been isolated as organohalide-respiring bacteria (OHRB) and show versatile dehalogenation of both chlorinated aliphatic and aromatic compounds such as chloroethenes and chlorophenols. The Desulfitobacterium strains are phylogenetically classified into the phylum Firmicutes (Gram-positive bacteria). The closest related OHRB genus of Desulfitobacterium is Dehalobacter, the members of which are strict OHRB within the phylum Firmicutes (see Chap.  8). In contrast, the Desulfitobacterium strains isolated to date are not strict OHRB. In addition to the ability to respire with organohalides, most isolates can grow fermentatively on pyruvate and can utilize a variety of electron acceptors, including sulfite, thiosulfate, fumarate, Fe(III), and Mn(IV). Complete genome information is available for four Desulfitobacterium strains and draft information is available for five strains. The complete genomes range from 3.62 to 5.73 Mbp, with GC content ranging from 44.2 to 47.5 % and the number of predicted coding sequences ranging from 3340 to 5060. Consistent with their physiological diversity, the Desulfitobacterium genome has been shown to encode a variety of respiratory reductases, including reductive dehalogenases.

Keywords

Glycine Betaine Reductive Dehalogenation Chloroaromatic Compound Desulfitobacterium Hafniense Strain DCA1 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations Used in Text

AQDS

Anthraquinone-2,6-disulfonate

3-Cl-4-OHPA

3-chloro-4-hydroxyphenylacetic acid

DCA

Dichloroethane

DCP

Dichlorophenol

DMSO

Dimethyl sulfoxide

OHRB

Organohalide-respiring bacteria

PCE

Tetrachloroethene

PCP

Pentachlorophenol

RDase

Reductive dehalogenase

TCE

Trichloroethene

TCP

Trichlorophenol

Abbreviations Used in Tables

AQDS

Anthraquinone-2,6-disulfonate

BP

Bromophenol

bromoxynil

3,5-dibromo-4-hydroxybenzonitrile

CD

Carbon dichloride

CF

Chloroform

3-Cl-4-OHPA

3-chloro-4-hydroxyphenylacetic acid

CP

Chlorophenol

CT

Carbon tetrachloride

Cysteate

Alanine-3-sulfonate

DBP

Dibromophenol

DCA

Dichloroethane

DCHQ

Dichlorohydroquinone

DCP

Dichlorophenol

HCB

Hexachlorobenzene

Ioxynil

3,5-diiodo-4-hydroxybenzonitrile

Isethionate

2-hydroxyethanesulfonate

PCE

Tetrachloroethene

PCE

Tetrachloroethene

PCP

Pentachlorophenol

TCA

Trichloroethane

TCE

Trichloroethene

TCHQ

2,3,5,6-tetrachlorohydroquinone

TCMP

2,3,5,6-tetrachloro-4-methoxyphenol

TCP

Trichlorophenol

TeCP

Tetrachlorophenol

VC

Vinyl chloride

References

  1. Amos BK, Christ JA, Abriola LM, Pennell KD, Löffler FE (2007) Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution. Environ Sci Technol 41:963–970. doi: 10.1021/es061438n PubMedCrossRefGoogle Scholar
  2. Beaudet R, Lévesque MJ, Villemur R, Lanthier M, Chénier M, Lépine F, Bisaillon JG (1998) Anaerobic biodegradation of pentachlorophenol in a contaminated soil inoculated with a methanogenic consortium or with Desulfitobacterium frappieri strain PCP-1. Appl Microbiol Biotechnol 50:135–141. doi: 10.1007/s002530051268 PubMedCrossRefGoogle Scholar
  3. Bisaillon A, Beaudet R, Lépine F, Déziel E, Villemur R (2010) Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. Appl Environ Microbiol 76:7536–7540. doi: 10.1128/AEM.01362-10 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bouchard B, Beaudet R, Villemur R, McSween G, Lépine F, Bisaillon JG (1996) Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int J Syst Bacteriol 46:1010–1015PubMedCrossRefGoogle Scholar
  5. Boyanov MI, Fletcher KE, Kwon MJ, Rui X, O’Loughlin EJ, Löffler FE, Kemner KM (2011) Solution and microbial controls on the formation of reduced U(IV) species. Environ Sci Technol 45:8336–8344. doi: 10.1021/es2014049 PubMedCrossRefGoogle Scholar
  6. Boyer A, Pagé-BéLanger R, Saucier M, Villemur R, Lépine F, Juteau P, Beaudet R (2003) Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1. Biochem J 373:297–303. doi: 10.1042/BJ20021837 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Breitenstein A, Saano A, Salkinoja-Salonen M, Andreesen JR, Lechner U (2001) Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Arch Microbiol 175:133–142PubMedCrossRefGoogle Scholar
  8. Cervantes FJ, de Bok FAM, Duong-Dac T, Stams AJM, Lettinga G, Field JA (2002) Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ Microbiol 4:51–57PubMedCrossRefGoogle Scholar
  9. Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J Biosci Bioeng 89:489–491PubMedCrossRefGoogle Scholar
  10. Choudhary PK, Duret A, Rohrbach-Brandt E, Holliger C, Sigel RKO, Maillard J (2013) Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense. J Bacteriol 195:5186–5195. doi: 10.1128/JB.00730-13 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Christiansen N, Ahring BK (1996a) Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int J Syst Bacteriol 46:442–448. doi: 10.1099/00207713-46-2-442 CrossRefGoogle Scholar
  12. Christiansen N, Ahring BK (1996b) Introduction of a de novo bioremediation activity into anaerobic granular sludge using the dechlorinating bacterium DCB-2. Antonie Van Leeuwenhoek 69:61–66. doi: 10.1007/BF00641612 PubMedCrossRefGoogle Scholar
  13. Christiansen N, Ahring BK, Wohlfarth G, Diekert G (1998) Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfitobacterium hafniense. FEBS Lett 436:159–162. doi: 10.1016/S0014-5793(98)01114-4 PubMedCrossRefGoogle Scholar
  14. Cupples AM, Sanford RA, Sims GK (2005) Dehalogenation of the herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodino-4-hydroxybenzonitrile) by Desulfitobacterium chlororespirans. Appl Environ Microbiol 71:3741–3746. doi: 10.1128/AEM.71.7.3741-3746.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Davis JW, Odom JM, DeWeerd KA, Stahl DA, Fishbain SS, West RJ, Klecka GM, DeCarolis JG (2002) Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: characterization of microbial community structure. J Contam Hydrol 57:41–59. doi: 10.1016/S0169-7722(01)00217-0 PubMedCrossRefGoogle Scholar
  16. De Wildeman S, Diekert G, Van Langenhove H, Verstraete W (2003) Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl Environ Microbiol 69:5643–5647PubMedPubMedCentralCrossRefGoogle Scholar
  17. De Wildeman S, Linthout G, Van Langenhove H, Verstraete W (2004) Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane. Appl Microbiol Biotechnol 63:609–612. doi: 10.1007/s00253-003-1363-y PubMedCrossRefGoogle Scholar
  18. Dennie D, Gladu I, Lepine F, Villemur R, Bisaillon J, Beaudet R (1998) Spectrum of the reductive dehalogenation activity of Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 64:4603–4606PubMedPubMedCentralGoogle Scholar
  19. DeWeerd K, Mandelco L, Tanner R, Woese C, Suflita J (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol. doi: 10.1007/BF00249173
  20. Ding C, Zhao S, He J (2014) A desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ Microbiol 11:3387–97. doi:  10.1111/1462-2920.12387
  21. Dowideit K, Scholz-Muramatsu H, Miethling-Graff R, Vigelahn L, Freygang M, Dohrmann AB, Tebbe CC (2010) Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiol Ecol 71:444–459. doi: 10.1111/j.1574-6941.2009.00820.x PubMedCrossRefGoogle Scholar
  22. Duret A, Holliger C, Maillard J (2012) The physiological opportunism of Desulfitobacterium hafniense strain TCE1 towards organohalide respiration with tetrachloroethene. Appl Environ Microbiol 78:6121–6127. doi: 10.1128/AEM.01221-12 PubMedPubMedCentralCrossRefGoogle Scholar
  23. El Fantroussi S, Mahillon J, Naveau H, Agathos SN (1997) Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring. Appl Environ Microbiol 63:806–811PubMedPubMedCentralGoogle Scholar
  24. Finneran KT, Forbush HM, VanPraagh CVG, Lovley DR (2002) Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds. Int J Syst Evol Microbiol 52:1929–1935PubMedGoogle Scholar
  25. Fletcher KE, Ritalahti KM, Pennell KD, Takamizawa K, Löffler FE (2008) Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp. and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain JH1. Appl Environ Microbiol 74:6141–6143. doi: 10.1128/AEM.00994-08 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fletcher KE, Boyanov MI, Thomas SH, Wu Q, Kemner KM, Löffler FE (2010) U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species. Environ Sci Technol 44:4705–4709. doi: 10.1021/es903636c PubMedCrossRefGoogle Scholar
  27. Furukawa K, Suyama A, Tsuboi Y, Futagami T, Goto M (2005) Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. J Ind Microbiol Biotechnol 32:534–541. doi: 10.1007/s10295-005-0252-z PubMedCrossRefGoogle Scholar
  28. Futagami T, Tsuboi Y, Suyama A, Goto M, Furukawa K (2006a) Emergence of two types of nondechlorinating variants in the tetrachloroethene-halorespiring Desulfitobacterium sp. strain Y51. Appl Microbiol Biotechnol 70:720–728. doi: 10.1007/s00253-005-0112-9 PubMedCrossRefGoogle Scholar
  29. Futagami T, Yamaguchi T, Nakayama S-I, Goto M, Furukawa K (2006b) Effects of chloromethanes on growth of and deletion of the pce gene cluster in dehalorespiring Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 72:5998–6003. doi: 10.1128/AEM.00979-06 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gábor K, Hailesellasse Sene K, Smidt H, de Vos WM, van der Oost J (2008) Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression. Microbiology 154:3686–3696. doi: 10.1099/mic.0.2008/021584-0 PubMedCrossRefGoogle Scholar
  31. Gauthier A, Beaudet R, Lépine F, Juteau P, Villemur R (2006) Occurrence and expression of crdA and cprA5 encoding chloroaromatic reductive dehalogenases in Desulfitobacterium strains. Can J Microbiol 52:47–55. doi: 10.1139/w05-111 PubMedCrossRefGoogle Scholar
  32. Gerritse J, Renard V, Visser J, Gottschal JC (1995) Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Appl Microbiol Biotechnol 43:920–928PubMedCrossRefGoogle Scholar
  33. Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140PubMedCrossRefGoogle Scholar
  34. Gerritse J, Kloetstra G, Borger A, Dalstra G, Alphenaar A, Gottschal JC (1997) Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Appl Microbiol Biotechnol 48:553–562PubMedCrossRefGoogle Scholar
  35. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221PubMedPubMedCentralGoogle Scholar
  36. Goris T, Hornung B, Kruse T, Reinhold A, Westermann M, Schaap PJ, Smidt H, Gabriele Diekert G (2015) Draft genome sequence and characterization of Desulfitobacterium hafniense PCE-S. Stand Genomic Sci 10:15. doi: 10.1186/1944-3277-10-15 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398. doi: 10.1016/S0168-6445(98)00030-8
  38. Huang D, Becker JG (2011) Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations. Environ Sci Technol 45:1093–1099. doi: 10.1021/es102729v PubMedCrossRefGoogle Scholar
  39. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368:20120322. doi: 10.1098/rstb.2012.0322 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kaksonen AH, Plumb JJ, Robertson WJ, Franzmann PD, Gibson JAE, Puhakka JA (2004) Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactors treating acidic, metal-containing wastewater. Geomicrobiol J 21:469–480. doi: 10.1080/01490450490505455 CrossRefGoogle Scholar
  41. Kalan L, Ebert S, Kelly T, Wright GD (2009) Noncanonical vancomycin resistance cluster from Desulfitobacterium hafniense Y51. Antimicrob Agents Chemother 53:2841–2845. doi: 10.1128/AAC.01408-08 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kim S-H, Harzman C, Davis JK, Hutcheson R, Broderick JB, Marsh TL, Tiedje JM (2012) Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiol 12:21. doi: 10.1186/1471-2180-12-21 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kranzioch I, Stoll C, Holbach A, Chen H, Wang L, Zheng B, Norra S, Bi Y, Schramm K-W, Tiehm A (2013) Dechlorination and organohalide-respiring bacteria dynamics in sediment samples of the Yangtze Three Gorges Reservoir. Environ Sci Pollut Res Int 20:7046–7056. doi: 10.1007/s11356-013-1545-9 PubMedCrossRefGoogle Scholar
  44. Krasotkina J, Walters T, Maruya KA, Ragsdale SW (2001) Characterization of the B12- and iron-sulfur-containing reductive dehalogenase from Desulfitobacterium chlororespirans. J Biol Chem 276:40991–40997. doi: 10.1074/jbc.M106217200 PubMedCrossRefGoogle Scholar
  45. Kreher S, Schilhabel A, Diekert G (2008) Enzymes involved in the anoxic utilization of phenyl methyl ethers by Desulfitobacterium hafniense DCB2 and Desulfitobacterium hafniense PCE-S. Arch Microbiol 190:489–495. doi: 10.1007/s00203-008-0400-8 PubMedCrossRefGoogle Scholar
  46. Kruse T, Levisson M, de Vos WM, Smidt H (2014a) vanI: a novel D-Ala-D-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense. Microb Biotechnol 7:456–466. doi: 10.1111/1751-7915.12139 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kruse T, van de Pas BA, Atteia A, Krab K, Hagen WR, Goodwin L, Chain P, Boeren S, Maphosa F, Schraa G, de Vos WM, van der Oost J, Smidt H, Stams AJM (2014b) Genomic, proteomic and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. J Bacteriol JB.02370-14-. doi: 10.1128/JB.02370-14
  48. Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60:686–695. doi: 10.1099/ijs.0.003525-0 PubMedCrossRefGoogle Scholar
  49. Lanthier M, Villemur R, Lépine F, Bisaillon JG, Beaudet R (2000) Monitoring of Desulfitobacterium frappieri PCP-1 in pentachlorophenol-degrading anaerobic soil slurry reactors. Environ Microbiol 2:703–708. doi: 10.1046/j.1462-2920.2000.00144.x PubMedCrossRefGoogle Scholar
  50. Lanthier M, Villemur R, Lépine F, Bisaillon JG, Beaudet R (2001) Geographic distribution of Desulfitobacterium frappieri PCP-1 and Desulfitobacterium spp. in soils from the province of Quebec. Canada. FEMS Microbiol Ecol 36:185–191PubMedCrossRefGoogle Scholar
  51. Lanthier M, Tartakovsky B, Villemur R, DeLuca G, Guiot SR (2002) Microstructure of anaerobic granules bioaugmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 68:4035–4043. doi: 10.1128/AEM.68.8.4035-4043.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lanthier M, Juteau P, Lépine F, Beaudet R, Villemur R (2005) Desulfitobacterium hafniense is present in a high proportion within the biofilms of a high-performance pentachlorophenol-degrading, methanogenic fixed-film reactor. Appl Environ Microbiol 71:1058–1065. doi: 10.1128/AEM.71.2.1058-1065.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lecouturier D, Godon JJ, Lebeault JM (2003) Phylogenetic analysis of an anaerobic microbial consortium deiodinating 5-amino-2,4,6-triiodoisophthalic acid. Appl Microbiol Biotechnol 62:400–406. doi: 10.1007/s00253-003-1278-7 PubMedCrossRefGoogle Scholar
  54. Lee T, Tokunaga T, Suyama A, Furukawa K (2001) Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron. J Biosci Bioeng 92:453–458. doi: 10.1016/S1389-1723(01)80295-4 PubMedCrossRefGoogle Scholar
  55. Lie TJ, Godchaux W, Leadbetter ER (1999) Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol 65:4611–4617PubMedPubMedCentralGoogle Scholar
  56. Löffler F, Sanford R, Tiedje J (1996) Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23. Appl Envir Microbiol 62:3809–3813Google Scholar
  57. Löffler FE, Ritalahti KM, Tiedje JM (1997) Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl Environ Microbiol 63:4982–4985PubMedPubMedCentralGoogle Scholar
  58. Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26:152–157. doi: 10.1002/(SICI)1521-401X(199805)26:3<152:AID-AHEH152>3.0.CO;2-D CrossRefGoogle Scholar
  59. Luijten ML, Weelink SA, Godschalk B, Langenhoff AA, van Eekert MH, Schraa G, Stams AJ (2004) Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. FEMS Microbiol Ecol 49:145–150. doi: 10.1016/j.femsec.2004.01.015 PubMedCrossRefGoogle Scholar
  60. Lupa B, Wiegel J (2009) Genus IV: Desulfitobacterium. In: Vos P, Garity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 975–982Google Scholar
  61. Mac Nelly A, Kai M, Svatoš A, Diekert G, Schubert T (2014) Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. Appl Environ Microbiol 80:4313–4322. doi: 10.1128/AEM.00881-14 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mackiewicz M, Wiegel J (1998) Comparison of energy and growth yields for Desulfitobacterium dehalogenans during utilization of chlorophenol and various traditional electron acceptors. Appl Environ Microbiol 64:352–355PubMedPubMedCentralGoogle Scholar
  63. Madsen T, Licht D (1992) Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol 58:2874–2878PubMedPubMedCentralGoogle Scholar
  64. Maes A, Van Raemdonck H, Smith K, Ossieur W, Lebbe L, Verstraete W (2006) Transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1,2-DCA-contaminated groundwater. Environ Sci Technol 40:5544–5552. doi: 10.1021/es060953i PubMedCrossRefGoogle Scholar
  65. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638PubMedPubMedCentralCrossRefGoogle Scholar
  66. Maillard J, Regeard C, Holliger C (2005) Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 7:107–117. doi: 10.1111/j.1462-2920.2004.00671.x PubMedCrossRefGoogle Scholar
  67. Maillard J, Genevaux P, Holliger C (2011) Redundancy and specificity of multiple trigger factor chaperones in Desulfitobacteria. Microbiology 157:2410–2421. doi: 10.1099/mic.0.050880-0 PubMedCrossRefGoogle Scholar
  68. Miller E, Wohlfarth G, Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168:513–519PubMedCrossRefGoogle Scholar
  69. Miller E, Wohlfarth G, Diekert G (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch Microbiol 169:497–502PubMedCrossRefGoogle Scholar
  70. Miller MD, Aravind L, Bakolitsa C, Rife CL, Carlton D, Abdubek P, Astakhova T, Axelrod HL, Chiu HJ, Clayton T, Deller MC, Duan L, Feuerhelm J, Grant JC, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Okach L, Reyes R, van den Bedem H, Weekes D, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA (2010) Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 66:1167–1173. doi: 10.1107/S1744309110007517 CrossRefGoogle Scholar
  71. Milliken CE, May HD (2007) Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 73:1180–1189. doi: 10.1007/s00253-006-0564-6 PubMedCrossRefGoogle Scholar
  72. Milliken CE, Meier GP, Sowers KR, May HD (2004a) Chlorophenol production by anaerobic microorganisms: transformation of a biogenic chlorinated hydroquinone metabolite. Appl Environ Microbiol 70:2494–2496PubMedPubMedCentralCrossRefGoogle Scholar
  73. Milliken CE, Meier GP, Watts JEM, Sowers KR, May HD (2004b) Microbial anaerobic demethylation and dechlorination of chlorinated hydroquinone metabolites synthesized by basidiomycete fungi. Appl Environ Microbiol 70:385–392PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mingo FS, Studenik S, Diekert G (2014) Conversion of phenyl methyl ethers by Desulfitobacterium spp. and screening for the genes involved. FEMS Microbiol Ecol 90:783–790. doi: 10.1111/1574-6941.12433 PubMedCrossRefGoogle Scholar
  75. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507PubMedPubMedCentralGoogle Scholar
  76. Morita Y, Futagami T, Goto M, Furukawa K (2009) Functional characterization of the trigger factor protein PceT of tetrachloroethene-dechlorinating Desulfitobacterium hafniense Y51. Appl Microbiol Biotechnol 83:775–781. doi: 10.1007/s00253-009-1958-z PubMedCrossRefGoogle Scholar
  77. Neumann A, Engelmann T, Schmitz R, Greiser Y, Orthaus A, Diekert G (2004) Phenyl methyl ethers: novel electron donors for respiratory growth of Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S. Arch Microbiol 181:245–249. doi: 10.1007/s00203-004-0651-y PubMedCrossRefGoogle Scholar
  78. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230. doi: 10.1016/j.copbio.2004.04.006 PubMedCrossRefGoogle Scholar
  79. Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67:5568–5580. doi: 10.1128/AEM.67.12.5568-5580.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274. doi: 10.1128/JB.188.6.2262-2274.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Patel BK, Love CA, Stackebrandt E (1992) Helix 6 of the 16S rRNA of the bacterium Desulfotomaculum australicum exhibits an unusual structural idiosyncrasy. Nucleic Acids Res 20:5483PubMedPubMedCentralCrossRefGoogle Scholar
  82. Peng X, Yamamoto S, Vertès AA, Keresztes G, Inatomi K, Inui M, Yukawa H (2012) Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors. J Ind Microbiol Biotechnol 39:255–68. doi: 10.1007/s10295-011-1023-7
  83. Prat L, Maillard J, Grimaud R, Holliger C (2011) Physiological adaptation of Desulfitobacterium hafniense strain TCE1 to tetrachloroethene respiration. Appl Environ Microbiol 77:3853–3859. doi: 10.1128/AEM.02471-10 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Prat L, Maillard J, Rohrbach-Brandt E, Holliger C (2012) An unusual tandem-domain rhodanese harbouring two active sites identified in Desulfitobacterium hafniense. FEBS J 279:2754–2767. doi: 10.1111/j.1742-4658.2012.08660.x PubMedCrossRefGoogle Scholar
  85. Puyol D, Mohedano AF, Rodriguez JJ, Sanz JL (2011) Effect of 2,4,6-trichlorophenol on the microbial activity of adapted anaerobic granular sludge bioaugmented with Desulfitobacterium strains. N Biotechnol 29:79–89. doi: 10.1016/j.nbt.2011.06.011 PubMedCrossRefGoogle Scholar
  86. Reinhold A, Westermann M, Seifert J, von Bergen M, Schubert T, Diekert G (2012) Impact of vitamin B12 on formation of the tetrachloroethene reductive dehalogenase in Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 78:8025–8032. doi: 10.1128/AEM.02173-12 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rogosa M (1971) Peptococcaceae, a new Family to include the Gram-positive, anaerobic cocci of the Genera Peptococcus, Peptostreptococcus, and Ruminococcus. Int J Syst Bacteriol 21:234–237. doi: 10.1099/00207713-21-3-234 CrossRefGoogle Scholar
  88. Rouzeau-Szynalski K, Maillard J, Holliger C (2011) Frequent concomitant presence of Desulfitobacterium spp. and “Dehalococcoides” spp. in chloroethene-dechlorinating microbial communities. Appl Microbiol Biotechnol 90:361–368. doi: 10.1007/s00253-010-3042-0 PubMedCrossRefGoogle Scholar
  89. Sanford RA, Cole JR, Löffler FE, Tiedje JM (1996) Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62:3800–3808PubMedPubMedCentralGoogle Scholar
  90. Shelobolina ES, VanPraagh CG, Lovley DR (2003) Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol J 20:143–156. doi: 10.1080/01490450390193255 CrossRefGoogle Scholar
  91. Shelton DR, Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid. Appl Environ Microbiol 48:840–848PubMedPubMedCentralGoogle Scholar
  92. Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73. doi: 10.1146/annurev.micro.58.030603.123600 PubMedCrossRefGoogle Scholar
  93. Smidt H, Song D, van Der Oost J, de Vos WM (1999) Random transposition by Tn916 in Desulfitobacterium dehalogenans allows for isolation and characterization of halorespiration-deficient mutants. J Bacteriol 181:6882–6888PubMedPubMedCentralGoogle Scholar
  94. Smidt H, van Leest M, van der Oost J, de Vos WM (2000) Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J Bacteriol 182:5683–5691PubMedPubMedCentralCrossRefGoogle Scholar
  95. Smidt H, van der Oost J, de Vos WM (2001) Development of a gene cloning and inactivation system for halorespiring Desulfitobacterium dehalogenans. Appl Environ Microbiol 67:591–597. doi: 10.1128/AEM.67.2.591-597.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Spring S, Rosenzweig F (2006) The genera Desulfitobacterium and Desulfosporosinus: taxonomy. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) The prokaryotes, Volume 4: bacteria: firmicutes, cyanobacteria. Springer, New York, pp 771–786. doi: 10.1007/0-387-30744-3_240
  97. Studenik S, Vogel M, Diekert G (2012) Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J Bacteriol 194:3317–3326. doi: 10.1128/JB.00146-12 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470. doi: 10.1016/j.tim.2010.06.005 PubMedCrossRefGoogle Scholar
  99. Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65:1474–1481. doi: 10.1271/bbb.65.1474 PubMedCrossRefGoogle Scholar
  100. Suyama A, Yamashita M, Yoshino S, Furukawa K (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184:3419–3425PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tartakovsky B, Levesque MJ, Dumortier R, Beaudet R, Guiot SR (1999) Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 65:4357–4362PubMedPubMedCentralGoogle Scholar
  103. Thibodeau J, Gauthier A, Duguay M, Villemur R, Lépine F, Juteau P, Beaudet R (2004) Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 70:4532–4537. doi: 10.1128/AEM.70.8.4532-4537.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ticak T, Kountz DJ, Girosky KE, Krzycki JA, Ferguson DJ (2014) A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc Natl Acad Sci USA 111:E4668–E4676. doi: 10.1073/pnas.1409642111 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tront JM, Amos BK, Löffler FE, Saunders FM (2006) Activity of Desulfitobacterium sp. strain Viet1 demonstrates bioavailability of 2,4-dichlorophenol previously sequestered by the aquatic plant Lemna minor. Environ Sci Technol 40:529–535. doi: 10.1021/es0514545 PubMedCrossRefGoogle Scholar
  106. Tsukagoshi N, Ezaki S, Uenaka T, Suzuki N, Kurane R (2006) Isolation and transcriptional analysis of novel tetrachloroethene reductive dehalogenase gene from Desulfitobacterium sp. strain KBC1. Appl Microbiol Biotechnol 69:543–553. doi: 10.1007/s00253-005-0022-x PubMedCrossRefGoogle Scholar
  107. Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619PubMedCrossRefGoogle Scholar
  108. Utkin I, Dalton DD, Wiegel J (1995) Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 61:346–351PubMedPubMedCentralGoogle Scholar
  109. van de Pas BA, Smidt H, Hagen WR, van der Oost J, Schraa G, Stams AJ, de Vos WM (1999) Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274:20287–20292PubMedCrossRefGoogle Scholar
  110. van de Pas BA, Gerritse J, de Vos WM, Schraa G, Stams AJ (2001a) Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. Arch Microbiol 176:165–169PubMedCrossRefGoogle Scholar
  111. van de Pas BA, Harmsen HJ, Raangs GC, de Vos WM, Schraa G, Stams AJ (2001b) A Desulfitobacterium strain isolated from human feces that does not dechlorinate chloroethenes or chlorophenols. Arch Microbiol 175:389–394PubMedCrossRefGoogle Scholar
  112. Villemur R (2013) The pentachlorophenol-dehalogenating Desulfitobacterium hafniense strain PCP-1. Philos Trans R Soc Lond B Biol Sci 368:20120319. doi: 10.1098/rstb.2012.0319 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Villemur R, Lanthier M, Beaudet R, Lépine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733. doi: 10.1111/j.1574-6976.2006.00029.x PubMedCrossRefGoogle Scholar
  114. Villemur R, Constant P, Gauthier A, Shareck M, Beaudet R (2007) Heterogeneity between 16S ribosomal RNA gene copies borne by one Desulfitobacterium strain is caused by different 100-200 bp insertions in the 5′ region. Can J Microbiol 53:116–128. doi: 10.1139/w06-111 PubMedCrossRefGoogle Scholar
  115. Wiegel J, Zhang X, Wu Q (1999) Anaerobic dehalogenation of hydroxylated polychlorinated biphenyls by Desulfitobacterium dehalogenans. Appl Environ Microbiol 65:2217–2221PubMedPubMedCentralGoogle Scholar
  116. Woo PCY, Teng JLL, Leung K-W, Lau SKP, Woo GKS, Wong ACY, Wong MKM, Yuen K-Y (2005) Anaerospora hongkongensis gen. nov. sp. nov., a novel genus and species with ribosomal DNA operon heterogeneity isolated from an intravenous drug abuser with pseudobacteremia. Microbiol Immunol 49:31–39PubMedCrossRefGoogle Scholar
  117. Yang Y, Pesaro M, Sigler W, Zeyer J (2005) Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community. Water Res 39:3954–3966. doi: 10.1016/j.watres.2005.07.010 PubMedCrossRefGoogle Scholar
  118. Ye L, Schilhabel A, Bartram S, Boland W, Diekert G (2010) Reductive dehalogenation of brominated ethenes by Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S. Environ Microbiol 12:501–509. doi: 10.1111/j.1462-2920.2009.02093.x PubMedCrossRefGoogle Scholar
  119. Yoshida N, Asahi K, Sakakibara Y, Miyake K, Katayama A (2007) Isolation and quantitative detection of tetrachloroethene (PCE)-dechlorinating bacteria in unsaturated subsurface soils contaminated with chloroethenes. J Biosci Bioeng 104:91–97. doi: 10.1263/jbb.104.91 PubMedCrossRefGoogle Scholar
  120. Zhao S, Ding C, He J (2015) Detoxification of 1,1,2-trichloroethane to ethene by desulfitobacterium and identification of its functional reductase gene. PLoS ONE 10:e0119507. doi: 10.1371/journal.pone.0119507 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Education and Research Center for Fermentation Studies, Faculty of AgricultureKagoshima UniversityKagoshimaJapan
  2. 2.Faculty of Food Science and Nutrition, Department of Food and BioscienceBeppu UniversityBeppuJapan

Personalised recommendations