Advertisement

The Genus Dehalobacter

  • Julien Maillard
  • Christof HolligerEmail author
Chapter

Abstract

The genus Dehalobacter embraces bacterial populations that seem to exclusively degrade organohalides. All isolates in pure culture and highly enriched strains are obligate organohalide-respiring bacteria that use hydrogen as energy and electron source, acetate as carbon source, and an organohalide as terminal electron acceptor. Depending on the strain, they are restricted to the use of only one or two organohalides from the same chemical group (i.e. aliphatic or aromatic organohalides), a few strains however can use several compounds and from different groups. Organohalides used by Dehalobacter are chlorinated methanes, ethanes, ethenes, cyclohexanes, benzenes, phenols and phthalides. However, two enrichments dominated by Dehalobacter spp. indicate another metabolic pathway with a specific organohalide, namely fermentation of dichloromethane. No particular habitat can be defined for this bacterial genus since the different strains have been enriched and isolated from various matrices such as sediments, aquifers and anaerobic sludge from waste treatment processes. The small motile rods (0.5 μm in diameter, 2–3 μm long) usually stain Gram-negative, contain, however, peptidoglycan features of Gram-positives, menaquinones, and cytochrome b, and are surrounded by proteinaceous S-layer. Phylogenetically Dehalobacter is affiliated to low GC Gram-positive Firmicutes. Recently available genome sequences revealed that Dehalobacter spp. harbour an unexpected large number of putative reductive dehalogenase genes (10-27 paralogs) showing a relatively high diversity, several hydrogenases of different types, an 11-subunit respiration complex I, all necessary genes for the Wood-Ljungdahl pathway and the biosynthesis pathway of corrinoids, and seemed to confirm that Dehalobacter spp. cannot carry out any other respiration process than organohalide respiration. Hence, the hydrogen and carbon metabolisms seem to be more complex than anticipated, and also the observed restriction to few organohalides as electron acceptor is perhaps not reflecting the real dechlorination capabilities of Dehalobacter strains with the numerous putative reductive dehalogenase genes in their genomes.

Keywords

Industrial Wastewater Treatment Plant Reductive Dehalogenase Acetobacterium Woodii Desulfitobacterium Hafniense Organohalide Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Choudhary PK, Duret A, Rohrbach-Brandt E, Holliger C, Sigel RKO, Maillard J (2013) Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense. J Bacteriol 195(22):5186–5195. doi: 10.1128/jb.00730-13 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Damgaard I, Bjerg PL, Baelum J, Scheutz C, Hunkeler D, Jacobsen CS, Tuxen N, Broholm MM (2013) Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis. J Contam Hydrol 146:37–50. doi: 10.1016/j.jconhyd.2012.11.010 CrossRefPubMedGoogle Scholar
  3. De Bruin WP, Kotterman MJJ, Posthumus MA, Schraa G, Zehnder AJB (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58(6):1996–2000PubMedPubMedCentralGoogle Scholar
  4. Deshpande NP, Wong YK, Manefield M, Wilkins MR, Lee M (2013) Genome sequence of Dehalobacter UNSWDHB, a chloroform-dechlorinating bacterium. Genome Announc 1 (5). doi: 10.1128/genomeA.00720-13
  5. Duret A, Holliger C, Maillard J (2012) The physiological opportunism of Desulfitobacterium hafniense strain TCE1 towards organohalide respiration with tetrachloroethene. Appl Environ Microbiol 78(17):6121–6127. doi: 10.1128/aem.01221-12 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Griffin BM, Tiedje JM, Loffler FE (2004) Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environ Sci Technol 38(16):4300–4303. doi: 10.1021/es035439g CrossRefPubMedGoogle Scholar
  7. Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053–1060. doi: 10.1111/j.1462-2920.2009.02150.x CrossRefPubMedGoogle Scholar
  8. Grostern A, Edwards EA (2006) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72(12):7849–7856. doi: 10.1128/aem.01269-06 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Grostern A, Edwards EA (2009) Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75(9):2684–2693. doi: 10.1128/aem.02037-08 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Grostern A, Chan WW, Edwards EA (2009) 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environ Sci Technol 43(17):6799–6807Google Scholar
  11. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169(4):313–321CrossRefPubMedGoogle Scholar
  12. Holliger C, Schraa G, Stams AJM, Zehnder AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59(9):2991–2997PubMedPubMedCentralGoogle Scholar
  13. Hug LA, Maphosa F, Leys D, Loffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368(1616):20120322. doi: 10.1098/rstb.2012.0322 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Justicia-Leon SD, Ritalahti KM, Mack EE, Loffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78(4):1288–1291. doi: 10.1128/aem.07325-11 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim SH, Harzman C, Davis JK, Hutcheson R, Broderick JB, Marsh TL, Tiedje JM (2012) Genome sequence of Desulfitobacterium hafniense DCB-2, a gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiol 12(1):21 1471-2180-12-21CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kreher S, Schilhabel A, Diekert G (2008) Enzymes involved in the anoxic utilization of phenyl methyl ethers by Desulfitobacterium hafniense DCB2 and Desulfitobacterium hafniense PCE-S. Arch Microbiol 190(4):489–495. doi: 10.1007/s00203-008-0400-8 CrossRefPubMedGoogle Scholar
  17. Kruse T, Maillard J, Goodwin L, Woyke T, Teshima H, Bruce D, Detter C, Tapia R, Han C, Huntemann M, Wei CL, Han J, Chen A, Kyrpides N, Szeto E, Markowitz V, Ivanova N, Pagani I, Pati A, Pitluck S, Nolan M, Holliger C, Smidt H (2013) Complete genome sequence of Dehalobacter restrictus PER-K23(T.). Stand Genomic Sci 8 (3):375–388. doi: 10.4056/sigs.3787426
  18. Lacroix E, Brovelli A, Barry DA, Holliger C (2014) Use of silicate minerals for pH control during reductive dechlorination of chloroethenes in batch cultures of different microbial consortia. Appl Environ Microbiol 80(13):3858–3867. doi: 10.1128/aem.00493-14 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14(4):883–894. doi: 10.1111/j.1462-2920.2011.02656.x CrossRefPubMedGoogle Scholar
  20. Li Z, Inoue Y, Suzuki D, Ye L, Katayama A (2013a) Long-term anaerobic mineralization of pentachlorophenol in a continuous-flow system using only lactate as an external nutrient. Environ Sci Technol 47(3):1534–1541. doi: 10.1021/es303784f PubMedGoogle Scholar
  21. Li Z, Suzuki D, Zhang C, Yoshida N, Yang S, Katayama A (2013b) Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol. J Biosci Bioeng 116(5):602–609. doi: 10.1016/j.jbiosc.2013.05.009 CrossRefPubMedGoogle Scholar
  22. Lima G, Parker B, Meyer J (2012) Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. Environ Sci Technol 46(11):5756–5763. doi: 10.1021/es300214f CrossRefPubMedGoogle Scholar
  23. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Muller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63 (Pt 2):625–635. doi: 10.1099/ijs.0.034926-0
  24. Lowe M, Madsen EL, Schindler K, Smith C, Emrich S, Robb F, Halden RU (2002) Geochemistry and microbial diversity of a trichloroethene-contaminated Superfund site undergoing intrinsic in situ reductive dechlorination. FEMS Microbiol Ecol 40(2):123–134. doi: 10.1111/j.1574-6941.2002.tb00944.x CrossRefPubMedGoogle Scholar
  25. Maillard J, Genevaux P, Holliger C (2011) Redundancy and specificity of multiple trigger factor chaperones in Desulfitobacteria. Microbiology 157(8):2410–2421. doi: 10.1099/mic.0.050880-0 CrossRefPubMedGoogle Scholar
  26. Maillard J, Regeard C, Holliger C (2005) Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 7(1):107–117. doi: 10.1111/j.1462-2920.2004.00671.x CrossRefPubMedGoogle Scholar
  27. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69(8):4628–4638CrossRefPubMedPubMedCentralGoogle Scholar
  28. Maphosa F, van Passel MW, de Vos WM, Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. Environ Microbiol Rep 4(6):604–616. doi: 10.1111/j.1758-2229.2012.00376.x
  29. Marzorati M, de Ferra F, Van Raemdonck H, Borin S, Allifranchini E, Carpani G, Serbolisca L, Verstraete W, Boon N, Daffonchio D (2007) A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1,2-dichloroethane. Appl Environ Microbiol 73(9):2990–2999. doi: 10.1128/aem.02748-06 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Moparthi V, Hägerhäll C (2011) The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol 72(5–6):484–497. doi: 10.1007/s00239-011-9447-2 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nelson JL, Fung JM, Cadillo-Quiroz H, Cheng X, Zinder SH (2011) A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environ Sci Technol 45(16):6806–6813. doi: 10.1021/es200480k CrossRefPubMedGoogle Scholar
  32. Nelson JL, Jiang J, Zinder SH (2014) Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. Environ Sci Technol 48(7):3776–3782. doi: 10.1021/es4044769 CrossRefPubMedGoogle Scholar
  33. Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180(16):4140–4145PubMedPubMedCentralGoogle Scholar
  34. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188(6):2262–2274. doi: 10.1128/JB.188.6.2262-2274.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pickett MW, Weiss N, Kelly DJ (1994) Gram-positive cell wall structure of the A3γ type in heliobacteria. FEMS Microbiol Lett 122(1–2):7–12. doi: 10.1111/j.1574-6968.1994.tb07135.x CrossRefPubMedGoogle Scholar
  36. Prat L, Maillard J, Grimaud R, Holliger C (2011) Physiological adaptation of Desulfitobacterium hafniense strain TCE1 to tetrachloroethene respiration. Appl Environ Microbiol 77(11):3853–3859. doi: 10.1128/aem.02471-10 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Regeard C, Maillard J, Holliger C (2004) Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Methods 56(1):107–118CrossRefPubMedGoogle Scholar
  38. Rouzeau-Szynalski K, Maillard J, Holliger C (2011) Frequent concomitant presence of Desulfitobacterium spp. and “Dehalococcoides” spp. in chloroethene-dechlorinating microbial communities. Appl Microbiol Biotechnol 90(1):361–368. doi: 10.1007/s00253-010-3042-0 CrossRefPubMedGoogle Scholar
  39. Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2013) The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos Trans R Soc Lond B Biol Sci 368(1616):20120325. doi: 10.1098/rstb.2012.0325 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rupakula A, Lu Y, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2015) Functional genomics of corrinoid starvation in the organohalide-respiring bacterium Dehalobacter restrictus strain PER-K23. Front Microbiol 5:751. doi: 10.3389/fmicb.2014.00751
  41. Schumacher W, Holliger C (1996) The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in “Dehalobacter restrictus”. J Bacteriol 178(8):2328–2333PubMedPubMedCentralGoogle Scholar
  42. Schumacher W, Holliger C, Zehnder AJ, Hagen WR (1997) Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett 409(3):421–425CrossRefPubMedGoogle Scholar
  43. Smidt H, van Leest M, van der Oost J, de Vos WM (2000) Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J Bacteriol 182(20):5683–5691CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sun BL, Griffin BM, Ayala-del-Rio HL, Hashsham SA, Tiedje JM (2002) Microbial dehalorespiration with 1,1,1-trichloroethane. Science 298(5595):1023–1025. doi: 10.1126/science.1074675 CrossRefPubMedGoogle Scholar
  45. Tang S, Gong Y, Edwards EA (2012) Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS ONE 7(12):e52038. doi: 10.1371/journal.pone.0052038 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tang YJ, Yi S, Zhuang W-Q, Zinder SH, Keasling JD, Alvarez-Cohen L (2009) Investigation of carbon metabolism in “Dehalococcoides ethenogenes” strain 195 by Use of isotopomer and transcriptomic analyses. J Bacteriol 191(16):5224–5231. doi: 10.1128/jb.00085-09 CrossRefPubMedPubMedCentralGoogle Scholar
  47. van Doesburg W, van Eekert MH, Middeldorp PJ, Balk M, Schraa G, Stams AJ (2005) Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiol Ecol 54(1):87–95. doi: 10.1016/j.femsec.2005.03.003 CrossRefPubMedGoogle Scholar
  48. Villemur R, Lanthier M, Beaudet R, Lepine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30(5):706–733CrossRefPubMedGoogle Scholar
  49. von Wintzingerode F, Schlotelburg C, Hauck R, Hegemann W, Gobel UB (2001) Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane. FEMS Microbiol Ecol 35(2):189–196CrossRefGoogle Scholar
  50. Wang S, He J (2013) Dechlorination of commercial PCBs and other multiple halogenated compounds by a sediment-free culture containing Dehalococcoides and Dehalobacter. Environ Sci Technol 47(18):10526–10534. doi: 10.1021/es4017624 PubMedGoogle Scholar
  51. Wang S, Zhang W, Yang KL, He J (2014) Isolation and characterization of a novel Dehalobacter species strain TCP1 that reductively dechlorinates 2,4,6-trichlorophenol. Biodegradation 25(2):313–323. doi: 10.1007/s10532-013-9662-1 CrossRefPubMedGoogle Scholar
  52. Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7(6):507–511. doi: 10.1007/bf00115297 CrossRefPubMedGoogle Scholar
  53. Yoshida N, Ye L, Baba D, Katayama A (2009) A novel Dehalobacter species is involved in extensive 4,5,6,7-tetrachlorophthalide dechlorination. Appl Environ Microbiol 75(8):2400–2405. doi: 10.1128/aem.02112-08 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang C, Suzuki D, Li Z, Ye L, Katayama A (2012) Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. J Biosci Bioeng 114(5):512–517. doi: 10.1016/j.jbiosc.2012.05.025 CrossRefPubMedGoogle Scholar
  55. Zhang CF, Li ZL, Suzuki D, Ye LZ, Yoshida N, Katayama A (2013) A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A. Chemosphere 92(10):1343–1348. doi: 10.1016/j.chemosphere.2013.05.051 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental BiotechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations