Advertisement

The Genus Dehalococcoides

  • Stephen H. ZinderEmail author
Chapter

Abstract

Dehalococcoides, now called Dehalococcoides mccartyi, was first discovered in an enrichment culture from sewage sludge that reductively dechlorinated the groundwater pollutants tetrachloroethene (PCE) and trichloroethene (TCE) to vinyl chloride (VC) and ethene, in contrast to other organohalide-respiring bacteria that dechlorinated PCE and TCE only as far as dichloroethenes (DCEs). The first isolate, strain 195, was a tiny disk-shaped bacterium in the phylum Chloroflexi that had an S-layer protein subunit cell wall lacking peptidoglycan. It was a strict anaerobe using only H2 as the electron donor and organohalides as respiratory electron acceptors. Other D. mccartyi strains are similar and use a variety of halogenated aliphatic and aromatic compounds as electron acceptors. The genomes of D. mccartyi are highly streamlined, varying from 1.34 to 1.5 MB, yet contain 10–36 different copies of rdhAB operons predicted to encode reductive dehalogenases (RDases), most with adjacent genes predicted to encode transcriptional regulators, indicating that organochloride respiration is a highly evolved and regulated process in D. mccartyi. The presence of D. mccartyi at chloroethene-contaminated groundwater sites appears necessary for dechlorination of PCE and TCE past DCEs, and molecular tests for D. mccartyi and its associated rdhAB genes have become part of contaminated site characterization. Moreover, D. mccartyi-containing cultures have been commercially developed for bioaugmentation of those sites to abet dechlorination to ethene, especially cultures that contain D. mccartyi strains that can efficiently convert VC to nontoxic ethene in a respiratory process, like strains BAV1 and VS. This tiny unusual bacterium is now considered to be an important player in the restoration of chloroethene-contaminated sites.

Keywords

Vinyl Chloride Reductive Dechlorination Benzyl Viologen Complete Dechlorination Streamlined Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

1,2-DCA

1,2-dichloroethane

1,2-DCP

1,2-dichloropropane

3-Cl-4-OHPA

3-chloro-4-hydroxyphenylacetic acid

AQDS

Anthraquinone-2,6-disulfonate

BP

Bromophenol

Bromoxynil

3,5-dibromo-4-hydroxybenzonitrile

CD

Carbon dichloride

CF

Chloroform

CP

Chlorophenol

CT

Carbon tetrachloride

Cysteate

Alanine-3-sulfonate

DBP

Dibromophenol

DCA

Dichloroethane

DCHQ

Dichlorohydroquinone

DCP

Dichlorophenol

DMSO

Dimethyl sulfoxide

HCB

Hexachlorobenzene

Ioxynil

3,5-diiodo-4-hydroxybenzonitrile

Isethionate

2-hydroxyethanesulfonate

OHRB

Organohalide-respiring bacteria

PCE

Tetrachloroethene

PCP

Pentachlorophenol

RDase

Reductive dehalogenase

rdh

Reductive dehalogenase homologous genes

TCA

Trichloroethane

TCE

Trichloroethene

TCHQ

2,3,5,6-tetrachlorohydroquinone

TCMP

2,3,5,6-tetrachloro-4-methoxyphenol

TCP

Trichlorophenol

TeCP

Tetrachlorophenol

VC

Vinyl chloride

References

  1. Adrian L, Szewzyk U, Wecke J, Görisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408(6812):580–583PubMedCrossRefGoogle Scholar
  2. Adrian L, Hansen SK, Fung JM, Görisch H, Zinder SH (2007a) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41(7):2318–2323PubMedCrossRefGoogle Scholar
  3. Adrian L, Rahnenführer J, Gobom J, Hölscher T (2007b) Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 73(23):7717–7724PubMedPubMedCentralCrossRefGoogle Scholar
  4. Adrian L, Dudkova V, Demnerova K, Bedard DL (2009) “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl Environ Microbiol 75(13):4516–4524. doi: 10.1128/AEM.00102-09 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9(6):414–426PubMedCrossRefGoogle Scholar
  6. Behrens S, Azizian MF, McMurdie PJ, Sabalowsky A, Dolan ME, Semprini L, Spormann AM (2008) Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Appl Environ Microbiol 74(18):5695–5703. doi: 10.1128/AEM.00926-08 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421(6921):357–360PubMedCrossRefGoogle Scholar
  8. Cheng D, He J (2009) Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl Environ Microbiol 75(18):5910–5918. doi: 10.1128/AEM.00767-09 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Christianssen N, Ahring BK (1996) Desulfitobacterium hafniense, sp. nov., an anaerobic reductively dechlorinating bacterium. Int J Syst Bacteriol 46:442–448CrossRefGoogle Scholar
  10. Crofts TS, Men Y, Alvarez-Cohen L, Taga ME (2014) A bioassay for the detection of benzimidazoles reveals their presence in a range of environmental samples. Front Microbiol 5:592. doi: 10.3389/fmicb.2014.00592 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cupples AM, Spormann AM, McCarty PL (2003) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69(2):953–959PubMedPubMedCentralCrossRefGoogle Scholar
  12. de Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8(4):755–758. doi: 10.1111/j.1462-2920.2006.01017.x PubMedCrossRefGoogle Scholar
  13. Delgado AG, Kang DW, Nelson KG, Fajardo-Williams D, Miceli JF 3rd, Done HY, Popat SC, Krajmalnik-Brown R (2014) Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS ONE 9(6):e100654. doi: 10.1371/journal.pone.0100654 PubMedPubMedCentralCrossRefGoogle Scholar
  14. DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30CrossRefGoogle Scholar
  15. DiStefano TD, Gossett JM, Zinder SH (1991) Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57(8):2287–2292PubMedPubMedCentralGoogle Scholar
  16. DiStefano TD, Gossett JM, Zinder SH (1992) Hydrogen as an electron donor for the dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl Environ Microbiol 58:3622–3629PubMedPubMedCentralGoogle Scholar
  17. Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36(17):4193–4202PubMedCrossRefGoogle Scholar
  18. Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microb 70(9):5538–5545CrossRefGoogle Scholar
  19. Durbin AM, Teske A (2011) Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ Microbiol 13(12):3219–3234. doi: 10.1111/j.1462-2920.2011.02544.x PubMedCrossRefGoogle Scholar
  20. Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, DeWeerd KA (2000) Bioaugmentation for accelerated in situ bioremediation. Environ Sci Technol 34:2254–2260CrossRefGoogle Scholar
  21. Fathepure BZ, Boyd SA (1988) Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiol Lett 49:149–156CrossRefGoogle Scholar
  22. Fennell DE, Gossett JM, Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31:918–926CrossRefGoogle Scholar
  23. Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Envir Sci Technol 38:2075–2081CrossRefGoogle Scholar
  24. Freedman DL, Gossett JM (1991) Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl Environ Microbiol 57(10):2847–2857PubMedPubMedCentralGoogle Scholar
  25. Gantzer CJ, Wackett LP (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25(4):715–722CrossRefGoogle Scholar
  26. Gerritse J, Renard V, Pedro-Gomes TM, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140PubMedCrossRefGoogle Scholar
  27. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappe MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309(5738):1242–1245PubMedCrossRefGoogle Scholar
  28. Goris T, Schubert T, Gadkari J, Wubet T, Tarkka M, Buscot F, Adrian L, Diekert G (2014) Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ Microbiol 16(11):3562–3580. doi: 10.1111/1462-2920.12589 PubMedCrossRefGoogle Scholar
  29. Gossett JM (1987) Measurement of Henry’s Law constants for C1 and C2 chlorinated hydrocarbons. Environ Sci Technol 21(12):202–208CrossRefGoogle Scholar
  30. Gribble GW (2010) Naturally occurring organohalogen compounds—a comprehensive update. Springer, New YorkCrossRefGoogle Scholar
  31. Hamonts K, Ryngaert A, Smidt H, Springael D, Dejonghe W (2014) Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons. FEMS Microbiol Ecol 87(3):715–732. doi: 10.1111/1574-6941.12260 PubMedCrossRefGoogle Scholar
  32. He J, Ritalahti KM, Aiello MR, Löffler FE (2003a) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69(2):996–1003PubMedPubMedCentralCrossRefGoogle Scholar
  33. He J, Ritalahti KM, Yang KL, Koenigsberg SS, Löffler FE (2003b) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424(6944):62–65PubMedCrossRefGoogle Scholar
  34. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7(9):1442–1450PubMedCrossRefGoogle Scholar
  35. He J, Holmes VF, Lee PK, Alvarez-Cohen L (2007) Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73(9):2847–2853PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68(2):485–495PubMedPubMedCentralCrossRefGoogle Scholar
  37. Holliger C, Schraa G, Stams AJM, Zehnder AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59:2991–2997PubMedPubMedCentralGoogle Scholar
  38. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJB (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169(4):313–321PubMedCrossRefGoogle Scholar
  39. Holmes VF, He J, Lee PK, Alvarez-Cohen L (2006) Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl Environ Microbiol 72(9):5877–5883. doi: 10.1128/AEM.00516-06 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368(1616):20120322. doi: 10.1098/rstb.2012.0322 (rstb.2012.0322 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in Microbiology, vol 2B, pp 117–132Google Scholar
  42. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103(8):2815–2820. doi: 10.1073/pnas.0511033103 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jayachandran G, Görisch H, Adrian L (2003) Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp. strain CBDB1. Arch Microbiol 180(6):411–416PubMedCrossRefGoogle Scholar
  44. Jayachandran G, Görisch H, Adrian L (2004) Studies on hydrogenase activity and chlorobenzene respiration in Dehalococcoides sp. strain CBDB1. Arch Microbiol 182(6):498–504PubMedCrossRefGoogle Scholar
  45. Johnson DR, Lee PK, Holmes VF, Fortin AC, Alvarez-Cohen L (2005) Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment. Appl Environ Microbiol 71(11):7145–7151PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kaster AK, Mayer-Blackwell K, Pasarelli B, Spormann AM (2014) Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin. ISME J 8(9):1831–1842. doi: 10.1038/ismej.2014.24 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kittelmann S, Friedrich MW (2008) Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. Environ Microbiol 10(1):31–46. doi: 10.1111/j.1462-2920.2007.01427.x PubMedGoogle Scholar
  48. Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70(10):6347–6351PubMedPubMedCentralCrossRefGoogle Scholar
  49. Krajmalnik-Brown R, Sung Y, Ritalahti KM, Michael Saunders F, Löffler FE (2007) Environmental distribution of the trichloroethene reductive dehalogenase gene (tceA) suggests lateral gene transfer among Dehalococcoides. FEMS Microbiol Ecol 59(1):206–214PubMedCrossRefGoogle Scholar
  50. Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 47:1262–1263CrossRefGoogle Scholar
  51. Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SC, Novak PJ (2012) Natural niche for organohalide-respiring Chloroflexi. Appl Environ Microbiol 78(2):393–401PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23(10):1269–1273PubMedCrossRefGoogle Scholar
  53. LaRoe SL, Fricker AD, Bedard DL (2014) Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination Process N. Environ Sci Technol 48(16):9187–9196. doi: 10.1021/es500872t PubMedCrossRefGoogle Scholar
  54. Lee PK, He J, Zinder SH, Alvarez-Cohen L (2009) Evidence for nitrogen fixation by “Dehalococcoides ethenogenes” strain 195. Appl Environ Microbiol 75(23):7551–7555. doi: 10.1128/AEM.01886-09 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lee PK, Cheng D, Hu P, West KA, Dick GJ, Brodie EL, Andersen GL, Zinder SH, He J, Alvarez-Cohen L (2011) Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. ISME J 5(6):1014–1024. doi: 10.1038/ismej.2010.202 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lee PK, Cheng D, West KA, Alvarez-Cohen L, He J (2013) Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environ Microbiol 15(8):2293–2305. doi: 10.1111/1462-2920.12099 PubMedCrossRefGoogle Scholar
  57. Löffler FE, Champine JE, Ritalahti KM, Sprague SJ, Tiedje JM (1997) Complete reductive dechlorination of 1,2-dichloropropane by anaerobic bacteria. Appl Environ Microbiol 63:2870–2875PubMedPubMedCentralGoogle Scholar
  58. Löffler FE, Sanford RA, Ritalahti KM (2005) Enrichment, cultivation, and detection of reductively dechlorinating bacteria. Methods Enzymol 397:77–111. doi: 10.1016/S0076-6879(05)97005-5 (S0076-6879(05)97005-5 [pii])PubMedCrossRefGoogle Scholar
  59. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Muller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Micr 63:625–635. doi: 10.1099/Ijs.0.034926-0 CrossRefGoogle Scholar
  60. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burriss DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275PubMedPubMedCentralGoogle Scholar
  61. Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66(12):5141–5147PubMedPubMedCentralCrossRefGoogle Scholar
  62. Major DW, McMaster ML, Cox EE, Edwards EA, Wworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Envir Sci Technol 36:5106–5116CrossRefGoogle Scholar
  63. Mansfeldt CB, Rowe AR, Heavner GL, Zinder SH, Richardson RE (2014) Meta-analyses of Dehalococcoides mccartyi strain 195 transcriptomic profiles identify a respiration rate-related gene expression transition point and interoperon recruitment of a key oxidoreductase subunit. Appl Environ Microbiol 80(19):6062–6072. doi: 10.1128/AEM.02130-14 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Marco-Urrea E, Nijenhuis I, Adrian L (2011a) Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45(4):1555–1562. doi: 10.1021/es1023459 PubMedCrossRefGoogle Scholar
  65. Marco-Urrea E, Paul S, Khodaverdi V, Seifert J, von Bergen M, Kretzschmar U, Adrian L (2011b) Identification and characterization of a re-citrate synthase in Dehalococcoides strain CBDB1. J Bacteriol 193(19):5171–5178. doi: 10.1128/JB.05120-11 (JB.05120-11 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  66. Marco-Urrea E, Seifert J, von Bergen M, Adrian L (2012) Stable isotope peptide mass spectrometry to decipher amino acid metabolism in Dehalococcoides strain CBDB1. J Bacteriol 194(16):4169–4177. doi: 10.1128/JB.00049-12 (JB.00049-12 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  67. Maymó-Gatell X, Tandoi V, Gossett JM, Zinder SH (1995) Characterization of an H2-utilizing anaerobic enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the complete absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61:3928–3933Google Scholar
  68. Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571PubMedCrossRefGoogle Scholar
  69. Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” strain 195. Appl Environ Microbiol 65:3108–3113PubMedPubMedCentralGoogle Scholar
  70. Maymó-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes” strain 195. Environ Sci Technol 35:516–521PubMedCrossRefGoogle Scholar
  71. McMurdie PJ, Behrens SF, Muller JA, Goke J, Ritalahti KM, Wagner R, Goltsman E, Lapidus A, Holmes S, Löffler FE, Spormann AM (2009) Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet 5(11):e1000714PubMedPubMedCentralCrossRefGoogle Scholar
  72. McMurdie PJ, Hug LA, Edwards EA, Holmes S, Spormann AM (2011) Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genom 12:287. doi: 10.1186/1471-2164-12-287 (1471-2164-12-287 [pii])CrossRefGoogle Scholar
  73. Miller E, Wohlfarth G, Diekert G (1997) Studies on tetrachloroethene respiration in Dehalospirillum multivorans. Arch Microbiol 166(6):379–387CrossRefGoogle Scholar
  74. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59 (Pt 11):2692–2697. doi: 10.1099/ijs.0.011502-0
  75. Morris RM, Sowell S, Barofsky D, Zinder S, Richardson R (2006) Transcription and mass-spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes. Envir Microbiol 8:1499–1509CrossRefGoogle Scholar
  76. Morris RM, Fung JM, Rahm BG, Zhang S, Freedman DL, Zinder SH, Richardson RE (2007) Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. Appl Environ Microbiol 73:320–326PubMedCrossRefGoogle Scholar
  77. Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3 (2). doi: 10.1128/mBio.00036-12
  78. Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70(8):4880–4888PubMedPubMedCentralCrossRefGoogle Scholar
  79. Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180:4140–4145PubMedPubMedCentralGoogle Scholar
  80. Nijenhuis I, Zinder SH (2005) Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 71(3):1664–1667PubMedPubMedCentralCrossRefGoogle Scholar
  81. Padilla-Crespo E, Yan J, Swift C, Wagner DD, Chourey K, Hettich RL, Ritalahti KM, Löffler FE (2014) Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring chloroflexi. Appl Environ Microbiol 80(3):808–818. doi: 10.1128/AEM.02927-13 (AEM.02927-13 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  82. Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann AM (2015) Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J Am Chem Soc 137(10):3525–3532. doi: 10.1021/ja511653d PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pöritz M, Goris T, Wubet T, Tarkka MT, Buscot F, Nijenhuis I, Lechner U, Adrian L (2013) Genome sequences of two dehalogenation specialists—Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted bitterfeld region. FEMS Microbiol Lett 343(2):101–104. doi: 10.1111/1574-6968.12160 PubMedCrossRefGoogle Scholar
  84. Rahm BG, Richardson RE (2008) Correlation of respiratory gene expression levels and pseudo-steady-state PCE respiration rates in Dehalococcoides ethenogenes. Environ Sci Technol 42(2):416–421PubMedCrossRefGoogle Scholar
  85. Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418(6898):630–633PubMedCrossRefGoogle Scholar
  86. Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72(4):2765–2774. doi: 10.1128/AEM.72.4.2765-2774.2006 (72/4/2765 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rosner BM, McCarty PL, Spormann AM (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl Environ Microbiol 63:4139–4144PubMedPubMedCentralGoogle Scholar
  88. Rossetti S, Blackall LL, Majone M, Hugenholtz P, Plumb JJ, Tandoi V (2003) Kinetic and phylogenetic characterization of an anaerobic dechlorinating microbial community. Microbiology 149 (Pt 2):459–469Google Scholar
  89. Rowe AR, Heavner GL, Mansfeldt CB, Werner JJ, Richardson RE (2012) Relating chloroethene respiration rates in Dehalococcoides to protein and mRNA biomarkers. Environ Sci Technol 46(17):9388–9397. doi: 10.1021/es300996c PubMedCrossRefGoogle Scholar
  90. Schaefer CE, Condee CW, Vainberg S, Steffan RJ (2009) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75 (2):141–148. doi: 10.1016/j.chemosphere.2008.12.041
  91. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Rev 61:262–280Google Scholar
  92. Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L (2013) Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos Trans R Soc Lond B Biol Sci 368(1616):20120321. doi: 10.1098/rstb.2012.0321 (rstb.2012.0321 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  93. Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen nov, sp nov, a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163(1):48–56CrossRefGoogle Scholar
  94. Schumacher W, Holliger C (1996) The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethylene in “Dehalobacter restrictus”. J Bacteriol 178:2328–2333PubMedPubMedCentralGoogle Scholar
  95. Schumacher W, Holliger C, Zehnder AJ, Hagen WR (1997) Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett 409(3):421–425PubMedCrossRefGoogle Scholar
  96. Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191(13):4451–4457PubMedPubMedCentralCrossRefGoogle Scholar
  97. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307(5706):105–108PubMedCrossRefGoogle Scholar
  98. Soboh B, Pinske C, Kuhns M, Waclawek M, Ihling C, Trchounian K, Trchounian A, Sinz A, Sawers G (2011) The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity. BMC Microbiol 11:173. doi: 10.1186/1471-2180-11-173 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117PubMedCrossRefGoogle Scholar
  100. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernandez N, Sanford RA, Mesbah NM, Löffler FE (2006a) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72(4):2775–2782PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sung Y, Ritalahti KM, Apkarian RP, Löffler FE (2006b) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72(3):1980–1987. doi: 10.1128/AEM.72.3.1980-1987.2006 (72/3/1980 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tandoi V, DiStefano TD, Bowser PA, Gossett JM, Zinder SH (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environ Sci Technol 28:973–979Google Scholar
  103. Tang YJ, Yi S, Zhuang WQ, Zinder SH, Keasling JD, Alvarez-Cohen L (2009) Investigation of carbon metabolism in “Dehalococcoides ethenogenes” strain 195 by use of isotopomer and transcriptomic analyses. J Bacteriol 191(16):5224–5231. doi: 10.1128/JB.00085-09 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tang S, Chan WW, Fletcher KE, Seifert J, Liang X, Löffler FE, Edwards EA, Adrian L (2013) Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl Environ Microbiol 79(3):974–981. doi: 10.1128/AEM.01873-12 (AEM.01873-12 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  105. Vogel TM, Criddle CS, McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ Sci Technol 21(8):722–736PubMedCrossRefGoogle Scholar
  106. Wagner A, Cooper M, Ferdi S, Seifert J, Adrian L (2012) Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environ Sci Technol 46(16):8960–8968. doi: 10.1021/es3003519 PubMedCrossRefGoogle Scholar
  107. Waller AS, Krajmalnik-Brown R, Löffler FE, Edwards EA (2005) Multiple reductive-dehalogenase-homologous genes are simultaneously transcribed during dechlorination by Dehalococcoides-containing cultures. Appl Environ Microbiol 71(12):8257–8264PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wang S, Chng KR, Wilm A, Zhao S, Yang KL, Nagarajan N, He J (2014) Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc Natl Acad Sci USA 111(33):12103–12108. doi: 10.1073/pnas.1404845111 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wasmund K, Schreiber L, Lloyd KG, Petersen DG, Schramm A, Stepanauskas R, Jorgensen BB, Adrian L (2014) Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J 8(2):383–397. doi: 10.1038/ismej.2013.143 PubMedCrossRefGoogle Scholar
  110. Wood JM, Kennedy FS, Wolfe RS (1968) The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochem 7:1707–1713CrossRefGoogle Scholar
  111. Yan J, Im J, Yang Y, Löffler FE (2013) Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philos Trans R Soc Lond B Biol Sci 368(1616):20120320. doi: 10.1098/rstb.2012.0320 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L, Taga ME (2012) Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Appl Environ Microbiol 78(21):7745–7752. doi: 10.1128/AEM.02150-12 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zhuang WQ, Yi S, Bill M, Brisson VL, Feng X, Men Y, Conrad ME, Tang YJ, Alvarez-Cohen L (2014) Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proc Natl Acad Sci USA 111(17):6419–6424. doi: 10.1073/pnas.1321542111 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zinder SH, Anguish T, Lobo T (1987) Isolation and characterization of a thermophilic acetotrophic strain of Methanothrix. Arch Microbiol 146:315–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MicrobiologyCornell UniversityIthacaUSA

Personalised recommendations