Advertisement

Energetic Considerations in Organohalide Respiration

  • Jan DolfingEmail author
Chapter

Abstract

Organohalide-respiring bacteria harness energy using halogenated organic compounds as electron acceptors. The objective of this chapter is to evaluate the thermodynamics and energetics of organohalide respiration, that is, (i) how much energy the organisms can obtain from dehalogenation, and how this energy compares to the energy available from other electron acceptors; (ii) how much energy the organisms actually harness from the dehalogenation reactions; and (iii) how much energy the organisms not only forfeit but actually dissipate when they convert halogenated compounds co-metabolically rather than metabolically. Alternative fates of organohalides—their anaerobic oxidation and fermentation—are also discussed.

Keywords

Gibbs Free Energy Electron Acceptor Bond Dissociation Energy Reductive Dechlorination Hydrogenotrophic Methanogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bylaska EJ, Dixon DA, Felmy AR, Aprà E, Windus TL, Zhan C-G, Tratnyek PG (2004) The energetics of the hydrogenolysis, dehydrohalogenation, and hydrolysis of 4,4′-dichloro-diphenyl-trichloroethane from a initio electronic structure theory. J Phys Chem A 108:5883–5893CrossRefGoogle Scholar
  2. Chen SD, Liu HX, Wang ZY (2007) Study of structural and thermodynamic properties for polychlorinated dibenzothiophenes by density functional theory. J Chem Eng Data 52:1195–1202CrossRefGoogle Scholar
  3. Davis CK, Webb RI, Sly LI, Denman SE, McSweeney CS (2012) Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes. FEMS Microbiol Ecol 80:671–684CrossRefPubMedGoogle Scholar
  4. Dick JM, Evans KA, Holman AI, Jaraula CMB, Grice K (2013) Estimation and application of the thermodynamic properties of aqueous phenanthrene and isomers of methylphenanthrene at high temperature. Geochim Cosmochim Acta 122:247–266CrossRefGoogle Scholar
  5. Ding C, Siyan Zhao S, He J (2014) A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ Microbiol 16:3387–3397CrossRefPubMedGoogle Scholar
  6. Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153:264–266CrossRefPubMedGoogle Scholar
  7. Dolfing J (1995) Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s. Appl Environ Microbiol 61:2450–2451Google Scholar
  8. Dolfing J (2000) Energetics of anaerobic degradation pathways of chlorinated aliphatic compounds. Microb Ecol 40:2–7CrossRefPubMedGoogle Scholar
  9. Dolfing J (2003) Thermodynamic considerations for dehalogenation. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer, Boston, pp 89–114Google Scholar
  10. Dolfing J (2015) Protocols for calculating reaction kinetics and thermodynamics. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols: statistics, data analysis, bioinformatics and modelling. Spinger, Berlin. doi: 10.1007/8623_2015_109
  11. Dolfing J, Harrison BK (1992) The Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ Sci Technol 26:2213–2218CrossRefGoogle Scholar
  12. Dolfing J, Janssen DB (1994) Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation 5:21–28Google Scholar
  13. Dolfing J, Novak I (2015) The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments. Biodegradation 26:15–27CrossRefPubMedGoogle Scholar
  14. Dolfing J, Tiedje JM (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch Microbiol 149:102–105CrossRefPubMedGoogle Scholar
  15. Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452CrossRefPubMedGoogle Scholar
  16. Dolfing J, Novak I, Archelas A, Macarie H (2012) Gibbs free energy of formation of chlordecone and potential degradation products: implications for remediation strategies and environmental fate. Environ Sci Technol 46:8131–8139CrossRefPubMedGoogle Scholar
  17. Goldman P (1965) Enzymatic cleavage of carbon-fluorine bond in fluoroacetate. J Biol Chem 240:3434–3438PubMedGoogle Scholar
  18. Gribble GW (2002) Naturally occurring organofluorines. In: Hutzinger O (ed) Handbook of environmental chemistry, vol 3. Springer, Heidelberg, pp 121–136Google Scholar
  19. Guerard JJ, Arey JS (2013) Critical evaluation of implicit solvent models for predicting aqueous oxidation potentials of neutral organic compounds. J Chem Theory Comput 9:5046–5058CrossRefPubMedGoogle Scholar
  20. Hanselmann KW (1991) Microbial energetics applied to waste repositories. Experientia 47:645–687CrossRefGoogle Scholar
  21. Holmes DA, Harrison BK, Dolfing J (1993) Estimation of Gibbs free energies of formation of polychlorinated biphenyls. Environ Sci Technol 27:725–731CrossRefGoogle Scholar
  22. Huang C-L, Harrison BK, Madura J, Dolfing J (1996) Thermodynamic prediction of dehalogenation pathways for PCDDs. Environ Toxicol Chem 15:824–836CrossRefGoogle Scholar
  23. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Phil Trans R Soc B Biol Sci 368:20120322CrossRefGoogle Scholar
  24. Jablonski PE, Pheasant DJ, Ferry JG (1996) Conversion of kepone by Methanosarcina thermophila. FEMS Microbiol Lett 139:169–173CrossRefGoogle Scholar
  25. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95:1487–1499CrossRefPubMedPubMedCentralGoogle Scholar
  26. Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78:1288–1291CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kirk KL (1991) Biochemistry of the elemental halogens and inorganic halides. Plenum Press, New YorkCrossRefGoogle Scholar
  28. Leys D, Adrian L, Smidt H (2013) Organohalide respiration: microbes breathing chlorinated molcecules. Phil Trans R Soc B Biol Sci 368:20120316CrossRefGoogle Scholar
  29. Li XW, Shibata E, Nakamura T (2003) Theoretical calculation of thermodynamic properties of polybrominated dibenzo-p-dioxins. J Chem Eng Data 48:725–735Google Scholar
  30. Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators in halorespiratory physiology. Appl Environ Microbiol 65:4049–4056PubMedPubMedCentralGoogle Scholar
  31. Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms, 8th edn. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  32. Madsen EL (2008) Environmental microbiology: from genomes to biogeochemistry. Wiley, New YorkGoogle Scholar
  33. Mägli A, Rainey FA, Leisinger T (1995) Acetogenesis from dichloromethane by a two-component mixed culture comprising a novel bacterium. Appl Environ Microbiol 61:2929–2943Google Scholar
  34. Mägli A, Wendt M, Leisinger T (1996) Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane a source of carbon and energy. Arch Microbiol 166:101–108CrossRefGoogle Scholar
  35. Mägli A, Messmer M, Leisinger T (1998) Metabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticum. Appl Environ Microbiol 64:646–650PubMedPubMedCentralGoogle Scholar
  36. Maphosa F, de Vos WM, Smidt H (2010) Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 28:308–316CrossRefPubMedGoogle Scholar
  37. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefPubMedGoogle Scholar
  38. Mavrovouniotis ML (1990) Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36:1070–1082CrossRefPubMedGoogle Scholar
  39. Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266:14440–14445PubMedGoogle Scholar
  40. Mayer-Blackwell K et al, Spormann A (2015) Integrative and comparative physiology of OHRB’s. In: Löffler FE, Adrain E (eds) Organohalide respiring bacteria. Springer, Heidelberg, pp XX–YYGoogle Scholar
  41. Maymo-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes” 195. Environ Sci Technol 35:516–521CrossRefPubMedGoogle Scholar
  42. McCarty PL (1997) Microbiology—breathing with chlorinated solvents. Science 276:1521–1522CrossRefPubMedGoogle Scholar
  43. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507PubMedPubMedCentralGoogle Scholar
  44. Murphy CD (2010) Biodegradation and biotransformation of organofluorine compounds. Biotechnol Lett 32:351–359CrossRefPubMedGoogle Scholar
  45. Parsons JR, Sáez M, Dolfing J, de Voogt P (2008) Biodegradation of perfluorinated compounds. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 196. Springer, Heidelberg, pp 53–71Google Scholar
  46. Reineke W (1984) Microbial degradation of halogenated aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, pp 319–360Google Scholar
  47. Sadowsky D, McNeill K, Cramer CJ (2013) Thermochemical factors affecting the dehalogenation of aromatics. Environ Sci Technol 47:14194–14203CrossRefPubMedGoogle Scholar
  48. Schrauzer GN, Katz RN (1978) Reductive dechlorination and degradation of Mirex and Kepone with vitamin B12s. Bioinorg Chem 9:123–143CrossRefPubMedGoogle Scholar
  49. Shock EL, Helgeson HC (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochim Cosmochim Acta 54:915–945CrossRefGoogle Scholar
  50. Smith MH, Woods SL (1994) Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s. Appl Environ Microbiol 60:4111–4115PubMedPubMedCentralGoogle Scholar
  51. Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New YorkGoogle Scholar
  52. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedPubMedCentralGoogle Scholar
  53. van Eekert MHA (1999) Transformation of chlorinated compounds by methanogenic granular sludge. PhD thesis, Wageningen University, WageningenGoogle Scholar
  54. van Eekert MHA, Stams AJM, Field JA, Schraa G (1999) Gratuitous dechlorination of chloroethanes by methanogenic granular sludge. Appl Microbiol Biotechnol 51:46–52CrossRefGoogle Scholar
  55. Vargas C, Song B, Camps M, Häggblom MM (2000) Anaerobic degradation of fluorinated aromatic compounds. Appl Microbiol Biotechnol 53:342–347CrossRefPubMedGoogle Scholar
  56. Vogels GD, Keltjens JT, van der Drift (1988) Biochemistry of methane production. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms. Wiley-Interscience, New York, pp 707–770Google Scholar
  57. Wackett LP (1995) Bacterial co-metabolism of halogenated organic compounds. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 217–241Google Scholar
  58. Yuan LX, Yu J, Wang ZY et al (2006) Thermodynamic property and relative stability of 76 polybrominated naphthalenes by density functional theory. J Chem Eng Data 51:2032–2037CrossRefGoogle Scholar
  59. Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley-Interscience, New York, pp 1–38Google Scholar
  60. Zeng XL, Yu YS (2013) Theoretical study on the molecular structures and thermodynamic properties of polychlorinated pyrenes. Comp Theor Chem 1013:92–96CrossRefGoogle Scholar
  61. Zeng XL, Wang Y, Zhang XL, Yu YS (2009) Density functional theory studies on the molecular structures and thermodynamic properties of polychlorinated anthracenes. J Mol Struct THEOCHEM 906:83–86CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle-upon-TyneEngland, UK

Personalised recommendations