Advertisement

Outlook—The Next Frontiers for Research on Organohalide-Respiring Bacteria

  • Lorenz AdrianEmail author
  • Frank E. LöfflerEmail author
Chapter

Abstract

Research efforts over the last two decades have substantially advanced the understanding of organohalide-respiring bacteria (OHRB), and this progress has enabled successful bioremediation applications at chlorinated solvent-contaminated sites. Yet, major knowledge gaps remain, and detailed biochemical, genetic, regulatory, evolutionary, taxonomic, and ecological questions should be explored to reveal the underlying principles of organohalide respiration, to better define the roles of OHRB in natural microbial communities, and to fully exploit their activities for contaminated site cleanup. The chapters in this book summarize the various advances that have been achieved following the discovery, physiological description, and practical application of OHRB. But where will the field go next? Which major topics will be targeted in the coming decade? What are the major unresolved questions? What new discoveries will be made overcoming insufficient concepts and leading to new questions and hypotheses? What new techniques will drive research in the near- and midterm future? Will scientists be able to convince funding agencies to invest in this field to enable further transformative discoveries? Will environmental scientists and engineers be successful in demonstrating that the current achievements are just the beginning, and that support for developing precision bioremediation treatment can substantially improve the current practice and realize considerable benefits to society, including safe drinking water, a cleaner environment and financial benefits to the taxpayer? We expect major progress in the biological understanding as well as more sophisticated engineering applications of organohalide respiration in the coming years.

Keywords

Vinyl Chloride Reductive Dechlorination Chlorinate Ethene Reductive Dehalogenase Organohalide Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Chen K, Huang L, Xu C, Liu X, He J, Zinder SH, Li S, Jiang J (2013) Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol Microbiol 89(6):1121–1139. doi: 10.1111/mmi.12332 CrossRefPubMedGoogle Scholar
  2. Cooper M, Wagner A, Wondrousch D, Sonntag F, Sonnabend A, Brehm M, Schüürmann G, Adrian L (2015) Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modelling. Environ Sci Technol 49(10):6018–6028. doi: 10.1021/acs.est.5b00303 CrossRefPubMedGoogle Scholar
  3. Ellis D, Lutz E, Odom J, Buchanan R, Bartlett C, Lee M, Harkness M, Deweerd K (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34(11):2254–2260. doi: 10.1021/es990638e CrossRefGoogle Scholar
  4. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368(1616):20120322. doi: 10.1098/rstb.2012.0322 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Kemp LR, Dunstan MS, Fisher K, Warwicker J, Leys D (2013) The transcriptional regulator CprK detects chlorination by combining direct and indirect readout mechanisms. Philos Trans R Soc B 368(1616):20120323. doi: 10.1098/rstb.2012.0323 CrossRefGoogle Scholar
  6. Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70(10):6347–6351. doi: 10.1128/AEM.70.10.6347-6351.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kublik A, Deobald D, Hartwig S, Schiffmann C, Andrades A, von Bergen M, Sawers RG, Adrian L (2016) Identification of a multiprotein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environ Microbiol. doi: 10.1111/1462-2920.13200 Google Scholar
  8. Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Hickey R, Tiedje JM, Adriaens P (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37(7):1422–1431. doi: 10.1021/es025985u CrossRefGoogle Scholar
  9. Löffler FE, Ritalahti KM, Zinder SH (2013) Dehalococcoides and reductive dechlorination of chlorinated solvents. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugmentation for groundwater remediation, vol 5. SERDP ESTCP environmental remediation technology. Springer, New York, pp 39–88. doi: 10.1007/978-1-4614-4115-1_2
  10. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116. doi: 10.1021/es0255711 CrossRefPubMedGoogle Scholar
  11. McMurdie P, Hug L, Edwards E, Holmes S, Spormann A (2011) Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genom 12(1):287. doi: 10.1186/1471-2164-12-287 CrossRefGoogle Scholar
  12. Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70(8):4880–4888. doi: 10.1128/AEM.70.8.4880-4888.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Padilla-Crespo E, Yan J, Swift C, Wagner DD, Chourey K, Hettich RL, Ritalahti KM, Löffler FE (2014) Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring Chloroflexi. Appl Environ Microbiol 80(3):808–818. doi: 10.1128/AEM.02927-13 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Payne KAP, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SEJ, Leys D (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517(7535):513–516. doi: 10.1038/nature13901 CrossRefPubMedGoogle Scholar
  15. Wagner A, Segler L, Kleinsteuber S, Sawers G, Smidt H, Lechner U (2013) Regulation of reductive dehalogenase gene transcription in Dehalococcoides mccartyi. Philos Trans R Soc B 368:20120317. doi: 10.1098/rstb.2012.0317 CrossRefGoogle Scholar
  16. Yan J, Simsir B, Farmer AT, Bi M, Yang Y, Campagna SR, Löffler FE (2015) The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi. ISME J. doi: 10.1038/ismej.2015.197 PubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department Isotope BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  2. 2.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Joint Institute for Biological Sciences (JIBS)University of Tennessee and Oak Ridge National Laboratory (UT-ORNL)Oak RidgeUSA
  4. 4.Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations