Advertisement

Use of Compound-Specific Isotope Analysis (CSIA) to Assess the Origin and Fate of Chlorinated Hydrocarbons

  • Daniel HunkelerEmail author
Chapter

Abstract

This chapter provides a comprehensive presentation of how compound-specific-isotope analysis (CSIA) can be used to evaluate the origin and fate of chlorinated hydrocarbons at the laboratory or field scale. It lays the foundation by introducing concepts to quantify isotope fractionation associated with reactive processes, explaining what causes such changes and presenting current methods to determine C, Cl and H isotope ratios. It then discusses how the transformation of a compound by various mechanisms can be differentiated using isotope ratios of multiple elements. It also summarizes the current knowledge about isotope fractionation during the transformation of common classes of chlorinated hydrocarbons. Finally, strategies to apply isotope methods at the field scale to track different sources of contamination or the type and progress of reactive processes are outlined.

Keywords

Isotope Ratio Isotope Fractionation Isotope Effect Heavy Isotope Kinetic Isotope Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe Y, Hunkeler D (2006) Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology? Environ Sci Technol 40(5):1588–1596PubMedCrossRefGoogle Scholar
  2. Abe Y, Aravena R, Parker BL, Hunkeler D (2009a) Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods. J Contam Hydrol 107(1–2):10–21PubMedCrossRefGoogle Scholar
  3. Abe Y, Aravena R, Zopfi J, Shouakar-Stash O, Cox E, Roberts JD, Hunkeler D (2009b) Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene. Environ Sci Technol 43(1):101–107PubMedCrossRefGoogle Scholar
  4. Abramson FP, Black GE, Lecchi P (2001) Application of high-performance liquid chromatography with isotope-ratio mass spectrometry for measuring low levels of enrichment of underivatized materials. J Chromatogr A 913(1–2):269–273. doi: 10.1016/s0021-9673(00)01032-3 PubMedCrossRefGoogle Scholar
  5. Adamczyk P, Dybala-Defratyka A, Paneth P (2011) DFT study of trichloroethene reaction with permanganate in aqueous solution. Environ Sci Technol 45(7):3006–3011. doi: 10.1021/es103251u PubMedCrossRefGoogle Scholar
  6. Adrian L, Szewzyk U, Wecke J, Görisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408(6812):580–583. doi: 10.1038/35046063 PubMedCrossRefGoogle Scholar
  7. Aelion MC, Höhener P, Hunkeler D, Aravena R (eds) (2010) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca RatonGoogle Scholar
  8. Aeppli C, Holmstrand H, Andersson P, Gustafsson O (2010) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82(1):420–426. doi: 10.1021/ac902445f PubMedCrossRefGoogle Scholar
  9. Atteia O, Franceschi M, Dupuy A (2008) Validation of reactive model assumptions with isotope data: application to the Dover case. Environ Sci Technol 42(9):3289–3295. doi: 10.1021/es071269m PubMedCrossRefGoogle Scholar
  10. Audí-Miró C, Cretnik S, Otero N, Palau J, Shouakar-Stash O, Soler A, Elsner M (2013) Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: evidence from dual element and product isotope values. Appl Geochem 32:175–183. doi: 10.1016/j.apgeochem.2012.08.025 CrossRefGoogle Scholar
  11. Badea S-L, Vogt C, Weber S, Danet A-F, Richnow H-H (2009) Stable isotope fractionation of gamma-hexachlorocyclohexane (lindane) during reductive dechlorination by two strains of sulfate-reducing bacteria. Environ Sci Technol 43(9):3155–3161. doi: 10.1021/es801284m PubMedCrossRefGoogle Scholar
  12. Badea S-L, Vogt C, Gehre M, Fischer A, Danet A-F, Richnow H-H (2011) Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of alpha-hexachlorocyclohexane in the environment. Rapid Commun Mass Spectrom 25(10):1363–1372. doi: 10.1002/rcm.4987 PubMedCrossRefGoogle Scholar
  13. Badin A, Buttet G, Maillard J, Holliger C, Hunkeler D (2014) Multiple dual C–Cl isotope patterns associated with reductive dechlorination of tetrachloroethene. Environ Sci Technol 48(16):9179–9186. doi: 10.1021/es500822d PubMedCrossRefGoogle Scholar
  14. Barth JAC, Slater G, Schueth C, Bill M, Downey A, Larkin M, Kalin RM (2002) Carbon isotope fractionation during aerobic biodegradation of trichloroethene by Burkholderia cepacia G4: a tool to map degradation mechanisms. Appl Environ Microbiol 68(4):1728–1734PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bashir S, Fischer A, Nijenhuis I, Richnow H-H (2013) Enantioselective carbon stable isotope fractionation of hexachlorocyclohexane during aerobic biodegradation by Sphingobium spp. Environ Sci Technol 47(20):11432–11439. doi: 10.1021/es402197s PubMedCrossRefGoogle Scholar
  16. Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jennottat S, Sakaguchi-Soder K, Cretnik S, Jager J, Haderlein SB, Aravena R, Elsner M (2011) Compound-specific chlorine isotope analysis: An interlaboratory comparison of GC-IRMS and GC-qMS methods. Anal Chem 83(20):7624–7634PubMedCrossRefGoogle Scholar
  17. Chan CCH, Mundle SOC, Eckert T, Liang X, Tang S, Lacrampe-Couloume G, Edwards EA, Lollar BS (2012) Large carbon isotope fractionation during biodegradation of chloroform by Dehalobacter cultures. Environ Sci Technol 46(18):10154–10160. doi: 10.1021/es3010317 PubMedGoogle Scholar
  18. Chartrand MMG, Waller A, Mattes TE, Elsner M, Lacrampe-Couloume G, Gossett JM, Edwards EA, Sherwood Lollar B (2005) Carbon isotopic fractionation during aerobic vinyl chloride degradation. Environ Sci Technol 39:1064–1070PubMedCrossRefGoogle Scholar
  19. Chartrand MMG, Hirschorn SK, Lacrampe-Couloume G, Lollar BS (2007) Compound specific hydrogen isotope analysis of 1,2-dichloroethane: potential for delineating source and fate of chlorinated hydrocarbon contaminants in groundwater. Rapid Commun Mass Spectrom 21(12):1841–1847. doi: 10.1002/rcm.3026 CrossRefGoogle Scholar
  20. Chu K-H, Mahendra S, Song DL, Conrad ME, Alverez-Cohen L (2004) Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes. Environ Sci Technol 38:3126–3130PubMedCrossRefGoogle Scholar
  21. Cichocka D, Siegert M, Imfeld G, Andert J, Beck K, Diekert G, Richnow HH, Nijenhuis I (2007) Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum ssp and Desulfitobacterium sp strain PCE-S. FEMS Microbiol Ecol 62(1):98–107PubMedCrossRefGoogle Scholar
  22. Clark I (2015) Groundwater geochemistry and isotopes. CRC Press, Boca RatonGoogle Scholar
  23. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca RatonGoogle Scholar
  24. Cleland WW (2006) Enzyme mechanisms from isotope effects. In: Kohen A, Limbach HH (eds). CRC Press, Boca Raton, pp 915–930Google Scholar
  25. Cretnik S, Thoreson KA, Bernstein A, Ebert K, Buchner D, Laskov C, Haderlein S, Shouakar-Stash O, Kliegman S, McNeill K, Elsner M (2013) Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: Insights from dual element isotope analysis (13C/12C, 37Cl/35Cl). Environ Sci Technol 47(13):6855–6863. doi: 10.1021/es400107n PubMedGoogle Scholar
  26. Cretnik S, Bernstein A, Shouakar-Stash O, Löffler F, Elsner M (2014) Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C–Cl bond competition in trichloroethene (TCE) reductive dehalogenation. Molecules 19(5):6450–6473. doi: 10.3390/molecules19056450 PubMedCrossRefGoogle Scholar
  27. Dong YR, Liang XM, Krumholz LR, Philp RP, Butler EC (2009) The Relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms. Environ Sci Technol 43(3):690–697. doi: 10.1021/es801917p PubMedCrossRefGoogle Scholar
  28. Elsner M, Hunkeler D (2008) Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules. Anal Chem 80(12):4731–4740PubMedCrossRefGoogle Scholar
  29. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916PubMedCrossRefGoogle Scholar
  30. Elsner M, Cwiertny DM, Roberts AL, Lollar BS (2007) 1,1,2,2-tetrachloroethane reactions with OH-, Cr(II), granular iron, and a copper-iron bimetal: insights from product formation and associated carbon isotope fractionation. Environ Sci Technol 41(11):4111–4117PubMedCrossRefGoogle Scholar
  31. Elsner M, Chartrand M, Vanstone N, Couloume GL, Lollar BS (2008) Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ Sci Technol 42(16):5963–5970. doi: 10.1021/es8001986 PubMedCrossRefGoogle Scholar
  32. Elsner M, Jochmann A, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403(9):2471–2491. doi: 10.1007/s00216-011-5683-y PubMedCrossRefGoogle Scholar
  33. Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated benzenes. Biodegradation 19(4):463–480. doi: 10.1007/s10532-007-9155-1 PubMedCrossRefGoogle Scholar
  34. Fletcher KE, Nijenhuis I, Richnow HH, Löffler FE (2011) Stable carbon isotope enrichment factors for cis-1,2-Dichloroethene and vinyl chloride reductive dechlorination by Dehalococcoides. Environ Sci Technol 45(7):2951–2957. doi: 10.1021/es103728q PubMedCrossRefGoogle Scholar
  35. Griebler C, Adrian L, Meckenstock RU, Richnow HH (2004) Stable carbon isotope fractionation during aerobic and anaerobic transformation of trichlorobenzene. FEMS Microbiol Ecol 48(3):313–321. doi: 10.1016/j.femsec.2004.02.005 PubMedCrossRefGoogle Scholar
  36. Heraty LJ, Fuller ME, Huang L, Abrajano T, Sturchio NC (1999) Isotope fractionation of carbon and chlorine by microbial degradation of dichloromethane. Org Geochem 30:793–799CrossRefGoogle Scholar
  37. Hirschorn SK, Dinglasan MJ, Elsner M, Mancini SA, Lacrampe-Couloume G, Edwards EA, Sherwood Lollar B (2004) Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-Dichloroethane. Environ Sci Technol 38:4775–4781PubMedCrossRefGoogle Scholar
  38. Hitzfeld KL, Gehre M, Richnow H-H (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectrom 25(20):3114–3122. doi: 10.1002/rcm.5203 PubMedCrossRefGoogle Scholar
  39. Hoefs J (2009) Stable isotope geochemistry. Springer, BerlinGoogle Scholar
  40. Hofstetter TB, Reddy CM, Heraty LJ, Berg M, Sturchio NC (2007) Carbon and chlorine isotope effects during abiotic reductive dechlorination of polychlorinated ethanes. Environ Sci Technol 41(13):4662–4668PubMedCrossRefGoogle Scholar
  41. Hunkeler D, Aravena R (2000) Evidence of substantial carbon isotope fractionation between substrate, inorganic carbon, and biomass during aerobic mineralization of 1,2-dichloroethene by Xanthobacter autotrophicus. Appl Environ Microbiol 66(11):4870–4876PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hunkeler D, Elsner M (2010) Principles and mechanisms of isotope fractionation. In: Aelion MC, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, pp 43–77Google Scholar
  43. Hunkeler D, Aravena R, Butler BJ (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) using compound-specific carbon isotope ratios: microcosms and field experiments. Environ Sci Technol 33(16):2733–2738CrossRefGoogle Scholar
  44. Hunkeler D, Aravena R, Cox E (2002) Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: laboratory experiments and modeling of isotope evolution. Environ Sci Technol 36:3378–3384PubMedCrossRefGoogle Scholar
  45. Hunkeler D, Aravena R, Cherry JA, Parker B (2003) Carbon isotope fractionation during chemical oxidation of chlorinated ethenes by permanganate: laboratory and field studies. Environ Sci Technol 37:798–804PubMedCrossRefGoogle Scholar
  46. Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL (2004) Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. J Contam Hydrol 74:265–282PubMedCrossRefGoogle Scholar
  47. Hunkeler D, Aravena R, Berry-Spark K, Cox E (2005) Assessment of degradation pathways at a site with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environ Sci Technol, vol 39Google Scholar
  48. Hunkeler D, Van Breukelen BM, Elsner M (2009) Modeling chlorine isotope trends during reductive sequential transformation of chlorinated ethenes. Environ Sci Technol 43(17):6750–6756PubMedCrossRefGoogle Scholar
  49. Hunkeler D, Abe Y, Broholm MM, Jeannotat S, Aravena R, Westergaard C, Jacobsen CS, Bjerg PL (2011a) Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR. J Contam Hydrol 119:69–79PubMedCrossRefGoogle Scholar
  50. Hunkeler D, Aravena R, Shouakar-Stash O, Weisbrod N, Nasser A, Netzer L, Ronen D (2011b) Carbon and chlorine isotope ratios of chlorinated ethenes migrating through a thick unsaturated zone of a sandy aquifer. Environ Sci Technol 45(19):8247–8253. doi: 10.1021/es201415k PubMedCrossRefGoogle Scholar
  51. Hunkeler D, Laier T, Breider F, Jacobsen OS (2012) Demonstrating a natural origin of chloroform in groundwater using carbon isotopes. Environ Sci Technol 46(11):6096–6101PubMedCrossRefGoogle Scholar
  52. Jeannottat S, Hunkeler D (2012) Chlorine and carbon isotopes fractionation during volatilization and diffusive transport of trichloroethene in the unsaturated zone. Environ Sci Technol 46(6):3169–3176. doi: 10.1021/es203547p PubMedCrossRefGoogle Scholar
  53. Jin B, Haderlein SB, Rolle M (2013) Integrated carbon and chlorine isotope modeling: applications to chlorinated aliphatic hydrocarbons dechlorination. Environ Sci Technol 47(3):1443–1451. doi: 10.1021/es304053h PubMedGoogle Scholar
  54. Kaschl A, Vogt C, Uhlig S, Nijenhuis I, Weiss H, Kastner M, Richnow HH (2005) Isotopic fractionation indicates anaerobic monochlorobenzene biodegradation. Environ Toxicol Chem 24(6):1315–1324. doi: 10.1897/04-321r.1 PubMedCrossRefGoogle Scholar
  55. Keppler F, Harper DB, Rockmann T, Moore RM, Hamilton JTG (2005) New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys 5:2403–2411CrossRefGoogle Scholar
  56. Kohen A, Limbach HH (eds) (2006) Isotope effects in chemistry and biology. CRC Press, Boca RatonGoogle Scholar
  57. Kuder T, Philp P (2013) Demonstration of compound-specific isotope analysis of hydrogen isotope ratios in chlorinated ethenes. Environ Sci Technol 47(3):1461–1467. doi: 10.1021/es303476v PubMedCrossRefGoogle Scholar
  58. Kuder T, van Breukelen BM, Vanderford M, Philp P (2013) 3D-CSIA: Carbon, chlorine, and hydrogen isotope fractionation in transformation of ICE to ethene by a Dehalococcoides culture. Environ Sci Technol 47(17):9668–9677. doi: 10.1021/es400463p PubMedCrossRefGoogle Scholar
  59. Laturnus F, Haselmann KF, Borch T, Gron C (2002) Terrestrial natural sources of trichloromethane (chloroform, CHCl3)—an overview. Biogeochemistry 60(2):121–139. doi: 10.1023/a:1019887505651 CrossRefGoogle Scholar
  60. Lee PKH, Conrad ME, Alvarez-Cohen L (2007) Stable carbon isotope fractionation of chloroethenes by dehalorespiring isolates. Environ Sci Technol 41(12):4277–4285PubMedCrossRefGoogle Scholar
  61. Liang X, Dong Y, Kuder T, Krumholz LR, Philp RP, Butler EC (2007) Distinguishing abiotic and biotic transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope fractionation. Environ Sci Technol 41(20):7094–7100. doi: 10.1021/es070970n PubMedCrossRefGoogle Scholar
  62. Liang X, Howlett MR, Nelson JL, Grant G, Dworatzek S, Lacrampe-Couloume G, Zinder SH, Edwards EA, Lollar BS (2011) Pathway-dependent isotope fractionation during aerobic and anaerobic degradation of monochlorobenzene and 1,2,4-trichlorobenzene. Environ Sci Technol 45(19):8321–8327. doi: 10.1021/es201224x PubMedCrossRefGoogle Scholar
  63. Liang X, Mundle SOC, Nelson JL, Passeport E, Chan CCH, Lacrampe-Couloume G, Zinder SH, Lollar BS (2014) Distinct carbon isotope fractionation during anaerobic degradation of dichlorobenzene isomers. Environ Sci Technol 48(9):4844–4851. doi: 10.1021/es4054384 PubMedCrossRefGoogle Scholar
  64. Liu YD, Gan YQ, Zhou AG, Liu CF, Li XQ, Yu TT (2014) Carbon and chlorine isotope fractionation during Fenton-like degradation of trichloroethene. Chemosphere 107:94–100. doi: 10.1016/j.chemosphere.2014.03.011 PubMedCrossRefGoogle Scholar
  65. Lojkasek-Lima P, Aravena R, Parker BL, Cherry JA (2012) Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis. Ground Water 50(5):754–764. doi: 10.1111/j.1745-6584.2011.00897.x PubMedCrossRefGoogle Scholar
  66. Lutz SR, Van Breukelen BM (2014) Combined source apportionment and degradation quantification of organic pollutants with CSIA: 1. Model derivation. Environ Sci Technol 48(11):6220–6228. doi: 10.1021/es405400w PubMedCrossRefGoogle Scholar
  67. Marchesi M, Aravena R, Sra KS, Thomson NR, Otero N, Soler A, Mancini S (2012) Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe2+ activated persulfate. Sci Total Environ 433:318–322. doi: 10.1016/j.scitotenv.2012.06.051 PubMedCrossRefGoogle Scholar
  68. Marchesi M, Thomson NR, Aravena R, Sra KS, Otero N, Soler A (2013) Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment. J Hazard Mater 260:61–66. doi: 10.1016/j.jhazmat.2013.05.011 PubMedCrossRefGoogle Scholar
  69. Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A 842:351–371PubMedCrossRefGoogle Scholar
  70. Miller LG, Kalin RM, McCauley SE, Hamilton JTG, Harper DB, Millet DB, Oremland RS, Goldstein AH (2001) Large carbon isotope fractionation associated with oxidation of methyl halide by methylotrophic bacteria. Proc Natl Acad Sci 98(10):5833–5837PubMedPubMedCentralCrossRefGoogle Scholar
  71. Morrill PL, Lacrampe-Couloume G, Slater GF, Sleep BE, Edwards EA, McMaster ML, Major DW, Lollar BS (2005) Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. J Contam Hydrol 76(3–4):279–293PubMedCrossRefGoogle Scholar
  72. Nadalig T, Greule M, Bringel F, Vuilleumier S, Keppler F (2013) Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria. Microbiology Open 2(6):893–900. doi: 10.1002/mbo3.124 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Neumann A, Hofstetter TB, Skarpeli-Liati M, Schwarzenbach RP (2009) Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites. Environ Sci Technol 43(11):4082–4089. doi: 10.1021/es9001967 PubMedCrossRefGoogle Scholar
  74. Nijenhuis I, Andert J, Beck K, Kästner M, Diekert G, Richnow HH (2005) Stable isotope fractionation of tetrachloroethene during reductive dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE-S and abiotic reactions with cyanocobalamin. Appl Environ Microbiol 71(7):3413–3419PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nikolausz M, Nijenhuis I, Ziller K, Richnow HH, Kastner M (2006) Stable carbon isotope fractionation during degradation of dichloromethane by methylotrophic bacteria. Environ Microbiol 8(1):156–164. doi: 10.1111/j.1462-2920.2005.00878.x PubMedCrossRefGoogle Scholar
  76. Numata M, Nakamura N, Koshikawa H, Terashima Y (2002) Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria. Environ Sci Technol 36:4389–4394PubMedCrossRefGoogle Scholar
  77. Palau J, Cretnik S, Shouakar-Stash O, Hoeche M, Elsner M, Hunkeler D (2014a) C and Cl isotope fractionation of 1,2-dichloroethane displays unique δ 13C/δ37Cl patterns for pathway identification and reveals surprising C-Cl bond involvement in microbial oxidation. Environ Sci Technol 48(16):9430–9437. doi: 10.1021/es5031917 PubMedCrossRefGoogle Scholar
  78. Palau J, Shouakar-Stash O, Hunkeler D (2014b) Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane. Environ Sci Technol 48(24):14400–14408. doi: 10.1021/es504252z PubMedCrossRefGoogle Scholar
  79. Poulson SR, Naraoka H (2002) Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE). Environ Sci Technol 36:3270–3274PubMedCrossRefGoogle Scholar
  80. Renpenning J, Keller S, Cretnik S, Shouakar-Stash O, Elsner M, Schubert T, Nijenhuis I (2014) Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene. Environ Sci Technol 48(20):11837–11845. doi: 10.1021/es503306g PubMedCrossRefGoogle Scholar
  81. Renpenning J, Hitzfeld KL, Gilevska T, Nijenhuis I, Gehre M, Richnow H-H (2015a) Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS. Anal Chem 87(5):2832–2839. doi: 10.1021/ac504232u PubMedCrossRefGoogle Scholar
  82. Renpenning J, Kuemmel S, Hitzfeld KL, Schimmelmann A, Gehre M (2015b) Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry. Anal Chem 87(18):9443–9450. doi: 10.1021/acs.analchem.5b02475 PubMedCrossRefGoogle Scholar
  83. Sakaguchi-Soder K, Jager J, Grund H, Matthaus F, Schuth C (2007) Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun Mass Spectrom 21(18):3077–3084PubMedCrossRefGoogle Scholar
  84. Sherwood Lollar B, Hirschorn S, Mundle SOC, Grostern A, Edwards EA, Lacrampe-Couloume G (2010) Insights into enzyme kinetics of chloroethane biodegradation using compound specific stable isotopes. Environ Sci Technol 44(19):7498–7503. doi: 10.1021/es101330r CrossRefGoogle Scholar
  85. Shouakar-Stash O, Drimmie RJ (2013) Online methodology for determining compound-specific hydrogen stable isotope ratios of trichloroethene and 1,2-cis-dichloroethene by continuous-flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 27(12):1335–1344. doi: 10.1002/rcm.6578 PubMedCrossRefGoogle Scholar
  86. Shouakar-Stash O, Frape SK, Drimmie RJ (2003) Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated solvents. J Contam Hydrol 60(3–4):211–228PubMedCrossRefGoogle Scholar
  87. Shouakar-Stash O, Drimmie RJ, Zhang M, Frape SK (2006) Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS. Appl Geochem 21:766–781CrossRefGoogle Scholar
  88. Tiehm A, Schmidt KR, Pfeifer B, Heidinger M, Ertl S (2008) Growth kinetics and stable carbon isotope fractionation during aerobic degradation of cis-1,2-dichloroethene and vinyl chloride. Water Res 42(10–11):2431–2438. doi: 10.1016/j.watres.2008.01.029 PubMedCrossRefGoogle Scholar
  89. Torrento C, Audi-Miro C, Bordeleau G, Marchesi M, Rosell M, Otero N, Soler A (2014) The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation. Environ Sci Technol 48(3):1869–1877. doi: 10.1021/es403838t PubMedCrossRefGoogle Scholar
  90. Van Breukelen BM, Hunkeler D, Volkering F (2005) Quantification of sequential chlorinated ethene degradation using a reactive transport model incorporating isotope fractionation. Environ Sci Technol 39:4189–4197PubMedCrossRefGoogle Scholar
  91. Van der Meer JR, van Neerven ARW, Devries EJ, Devos WM, Zehnder AJB (1991) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol 173(1):6–15Google Scholar
  92. Van Wanderdam EM, Frape SK, Aravena R, Drimmie RJ, Flatt H, Cherry JA (1995) Stable chlorine and carbon isotope measurements of selected organic solvents. Appl Geochem 10:547–552CrossRefGoogle Scholar
  93. Vannelli T, Studer A, Kertesz M, Leisinger T (1998) Chloromethane metabolism by Methylobacterium sp. strain CM4. Appl Environ Microbiol 64(5):1933–1936PubMedPubMedCentralGoogle Scholar
  94. VanStone NA, Focht RM, Mabury SA, Sherwood Lollar B (2004) Effect of iron type on kinetics and carbon isotopic enrichment of chlorinated ethylenes during abiotic reduction on Fe(0). Ground Water 42(2):268–276PubMedCrossRefGoogle Scholar
  95. Vieth A, Müller J, Strauch G, Kästner M, Gehre M, Meckenstock RU, Richnow HH (2003) In-situ biodegradation of tetrachloroethene and trichloroethene in contaminated aquifers monitored by stable isotope fractionation. Isot Environ Health Stud 39(2):113–124CrossRefGoogle Scholar
  96. Vogt C, Cyrus E, Herklotz I, Schlosser D, Bahr A, Herrmann S, Richnow HH, Fischer A (2008) Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation. Environ Sci Technol 42(21):7793–7800PubMedCrossRefGoogle Scholar
  97. Wolfsberg M, Van Hook WA, Paneth P (2010) Isotope effects in chemical, geological and bio sciences. Springer, DortrechtGoogle Scholar
  98. Zhang N, Bashir S, Qin J, Schindelka J, Fischer A, Nijenhuis I, Herrmann H, Wick LY, Richnow HH (2014) Compound specific stable isotope analysis (CSIA) to characterize transformation mechanisms of alpha-hexachlorocyclohexane. J Hazard Mater 280:750–757. doi: 10.1016/j.jhazmat.2014.08.046 PubMedCrossRefGoogle Scholar
  99. Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range. Anal Chem 20:5575–5583CrossRefGoogle Scholar
  100. Zwank L, Elsner M, Aeberhard A, Schwarzenbach RP, Haderlein SB (2005) Carbon isotope fractionation in the reductive dehalogenation of carbon tetrachloride at iron (hydr)oxide and iron sulfide minerals. Environ Sci Technol 39(15):5634–5641PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre for Hydrogeology and Geothermics (CHYN)NeuchâtelSwitzerland

Personalised recommendations