Skip to main content

Dehalobium chlorocoercia” DF-1—from Discovery to Application

  • Chapter
  • First Online:

Abstract

Dehalobium chlorocoercia” strain DF-1 is an organohalide respiring ultramicrobacterium isolated from a tidal estuary of Charleston Harbor using a polychlorinated biphenyl (PCB) congener as the sole electron acceptor. Organohalide respiration occurs by dechlorination of PCB congeners with doubly flanked chlorines, but this strain is also capable of dechlorinating chlorobenzenes with doubly flanked chlorines and tetra- and tri-chloroethene to a mixture of cis- and trans-1,2-dichloroethene. The range of PCB congeners dechlorinated from an Aroclor is limited in comparison with other PCB respiring strains; however, “D. chlorocoercia” strain DF-1 is capable of dechlorinating PCBs at environmentally relevant concentrations that are typically below saturation in water. In sediment-free medium an unidentified water-soluble factor from a Desulfovibrio sp. is required for growth. “D. chlorocoercia” strain DF-1 is osmotolerant, enabling it to grow and dechlorinate PCBs in sediments ranging from freshwater to marine. What follows is a description of “D. chlorocoercia” strain DF-1 and some of its related PCB respiring species from the perspective of environmental detection, dechlorination pathways and kinetics , biostimulation, electrostimulation, and finally bioaugmentation to enhance PCB degradation in sediments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham W-R, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253

    Article  CAS  PubMed  Google Scholar 

  • Abramowicz DA (1995) Aerobic and anaerobic PCB biodegradation in the environment. Environ Health Perspect 103(Suppl 5):97–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abramowicz DA, Brennan MJ, Van Dort HM, Gallagher EL (1993) Factors influencing the rate of polychlorinated biphenyl dechlorination in Hudson River sediments. Environ Sci Technol 27:1125–1131

    Article  CAS  Google Scholar 

  • Adrian L, Dudkova V, Demnerova K, Bedard DL (2009) “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 75(13):4516–4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed M, Focht DD (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol 19:47–52

    Article  CAS  PubMed  Google Scholar 

  • Bedard DL (2003) Polychlorinated biphenyls in aquatic sediments: environmental fate and outlook for biological treatment. In: Häggblom M, Bossert I (eds) In Dehalogenation: microbial processes and environmental applications. Kluwer Press, The Netherlands, pp 443–465

    Google Scholar 

  • Bedard DL, Smullen LA, DeWeerd KA, Dietrich DK, Frame GM, May RJ, Principe JM, Rouse TO, Fessler WA, Nicholson JS (1995) Chemical activation of microbially-mediated PCB dechlorination: A field study. Organohalog Compd 24:23–28

    Google Scholar 

  • Bedard DL, VanDort HM, May RJ, Smullen LA (1997) Enrichment of microorganisms that sequentially meta, para-dechlorinate the residue of Aroclor 1260 in Housatonic River sediment. Environ Sci Technol 31(11):3308–3313

    Article  CAS  Google Scholar 

  • Bedard DL, VanDort H, Deweerd KA (1998) Brominated biphenyls prime extensive microbial reductive dehalogenation of Aroclor 1260 in Housatonic River sediment. Appl Environ Microbiol 64(5):1786–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bedard DL, Van Slyke Jerzak G, Bailey JJ (2003) Strategies for the selective enrichment of microorganisms carrying out reductive dechlorination of polychlorinated biphenyls in freshwater sediments. Fresenius Environ Bull 12(3):276–285

    CAS  Google Scholar 

  • Bedard DL, Ritalahti KM, Löffler FE (2007) The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 73(8):2513–2521

    Google Scholar 

  • Berkaw M, Sowers KR, May HD (1996) Anaerobic ortho dechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Appl Environ Microbiol 62(7):2534–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt P, Kumar MS, Mudliar S, Chakrabarti T (2007) Biodegradation of chlorinated compounds—a review. Crit Rev Environ Sci Technol 37(2):165–198

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485

    Article  CAS  PubMed  Google Scholar 

  • Brown JJF, Wagner RE, Bedard DL, Brennan MJ, Carnahan JC, May RJ (1984) PCB transformations in upper Hudson sediments. Northeast Environ Sci 3:167–179

    CAS  Google Scholar 

  • Bruce M, Henry PG (2010) Biostimulation for anaerobic bioremediation of chlorinated solvents. In: Stroo HF, Ward CH (eds) In Situ remediation of chlorinated solvent plumes. Springer Science + Business Media, LLC, pp 357–423. doi:10.1007/978-1-4419-1401-9 12

  • Cho Y-C, Sokol RC, Rhee G-Y (2002) Kinetics of polychlorinated biphenyl dechlorination by Hudson River, New York, USA, sediment microorganisms. Environ Toxicol Chem 21(4):715–719

    Article  CAS  PubMed  Google Scholar 

  • Cho YC, Sokol RC, Frohnhoefer RC, Rhee GY (2003) Reductive dechlorination of polychlorinated biphenyls: threshold concentration and dechlorination kinetics of individual congeners in Aroclor 1248. Environ Sci Technol 37:5651–5656

    Article  CAS  PubMed  Google Scholar 

  • Cho Y-C, Oostrofsky EB, Rhee G-Y (2004) Effects of a rhamnolipid biosurfactant on the reductive dechlorination of polychlorinated biphenyls by St. Lawrence River (North America) microorganisms. Environ Toxicol Chem 23(6):1425–1430

    Article  CAS  PubMed  Google Scholar 

  • Chun CL, Payne RB, Sowers KR, May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Wat Res 47(1):141–152

    Article  CAS  Google Scholar 

  • Cutter L, Sowers KR, May HD (1998) Microbial dechlorination of 2,3,5,6-tetrachlorobiphenyl under anaerobic conditions in the absence of soil or sediment. Appl Environ Microbiol 64(8):2966–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cutter LA, Watts JEM, Sowers KR, May HD (2001) Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol 3(11):699–709

    Article  CAS  PubMed  Google Scholar 

  • Deweerd KA, Bedard DL (1999) Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs. Environ Sci Technol 33(12):2057–2063

    Article  CAS  Google Scholar 

  • Drenzek NJ, Eglinton TI, Wirsen CO, May HD, Wu Q, Sowers KR, Reddy CM (2001) The absence and application of stable carbon isotopic fractionation during the reductive dechlorination of polychlorinated biphenyls. Environ Sci Tech 35:3310–3313

    Article  CAS  Google Scholar 

  • Drenzek NJ, Eglinton TI, Wirsen CO, Sturchio NC, Heraty LJ, Sowers KR, Wu Q, May HD, Reddy CM (2004) Invariant chlorine isotopic signatures during microbial PCB reductive dechlorination. Environ Pollut 128(3):445–448

    Article  CAS  PubMed  Google Scholar 

  • Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes characterization of a gene coding for 16S ribosomal RNA. Nuc Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  • Evans BS, Dudley CA, Klasson KT (1996) Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Appl Biochem Biotechnol 57–58:885–894

    Article  PubMed  Google Scholar 

  • Fagervold SK, Watts JEM, May HD, Sowers KR (2005) Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl Environ Microbiol 71(12):8085–8090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagervold SK, May HD, Sowers KR (2007) Microbial reductive dechlorination of Aroclor 1260 in Baltimore Harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Appl Environ Microbiol 73(9):3009–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagervold SK, Watts JEM, May HD, Sowers KR (2011) Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. Wat Res 45:3899–3907

    Article  CAS  Google Scholar 

  • Fennell DE, Gossett JM (1998) Modeling the production of and competition for hydrogen in a dechlorinating culture. Environ Sci Technol 32(16):2450–2460

    Article  CAS  Google Scholar 

  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38(7):2075–2081

    Article  CAS  PubMed  Google Scholar 

  • Fish KM (1996) Influence of Aroclor 1242 concentration on polychlorinated biphenyl biotransformations in Hudson River test tube microcosms. Appl Environ Microbiol 62(8):3014–3016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman C, Burgess R, Cantwell M, Ho K, Lohmann R (2009) Comparing polychaete and polyethylene uptake to assess sediment resuspension effects on PCB bioavailability. Environ Sci Technol 43(8):2865–2870

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K (1976) Microbial metabolism of polychlorinated biphenyls: studies on relative degradability of polychlorinated biphenyl components by Alcaligenes sp. J Agric Food Chem 24:251–256

    Article  CAS  PubMed  Google Scholar 

  • Ghosh U, Zimmerman J, Luthy RG (2003) PCB and PAH speciation among particle types in contaminated sediments and effects on PAH bioavailability. Environ Sci Technol 37:2209–2217

    Article  CAS  PubMed  Google Scholar 

  • Heijnen JJ, van Dijken JP (1992) In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858

    Article  CAS  PubMed  Google Scholar 

  • Jarman WM, Hilkert A, Bacon CE, Collister JW, Ballschmiter K, Risebrough RW (1998) Compound-specific carbon isotopic analysis of Aroclors, Clophens, Kaneclors, and Phenoclors. Environ Sci Technol 32(6):833–836

    Article  CAS  Google Scholar 

  • Jin S, Fallgren PH (2014) Feasibility of using bioelectrochemical systems for bioremediation. In: Das S (ed) Microbial biodegradation and bioremediation. Elsevier, Amsterdam, pp 389–406

    Google Scholar 

  • Kjellerup BV, Sun X, Ghosh U, May HD, Sowers KR (2008) Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities. Environ Microbiol 10:1296–1309

    Article  CAS  PubMed  Google Scholar 

  • Krumins V, Park JW, Son EK, Rodenburg LA, Kerkhof LJ, Häggblom MM, Fennell DE (2009) PCB dechlorination enhancement in Anacostia River sediment microcosms. Wat Res 43(18):4549–4558. doi:10.1016/j.watres.2009.08.003

    Article  CAS  Google Scholar 

  • LaRoe SL, Fricker AD, Bedard DL (2014) Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination Process N. Environ Sci Technol 48:9187–9196

    Article  CAS  PubMed  Google Scholar 

  • Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligate organohalide-respiring anaerobic bacteria, relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635

    Article  PubMed  Google Scholar 

  • Lombard NJ, Ghosh U, Kjellerup BV, Sowers KR (2014) Kinetics and threshold level of 2,3,4,5-tetrachlorobiphenyl dechlorination by an organohalide respiring bacterium. Environ Sci Technol 48(8):4353–4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Yazdi H, Jin S, Zuo Y, Fallgren PH, Ren ZJ (2014) Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J Haz Mat 274:8–15

    Article  CAS  Google Scholar 

  • Marco-Urrea E, Nijenhuis I, Adrian L (2011) Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45:1555–1562

    Article  CAS  PubMed  Google Scholar 

  • Master ER, Lai VW, Kuipers B, Cullen WR, Mohn WW (2002) Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36:100–103

    Article  CAS  PubMed  Google Scholar 

  • May HD, Miller GS, Kjellerup BV, Sowers KR (2008a) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74(7):2089–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May HD, Miller GS, Kjellerup BV, Sowers KR (2008b) Author's Correction—Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74(19):6169–6170

    Google Scholar 

  • Miller GS, Milliken CE, Sowers KR, May HD (2005) Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-1. Environ Sci Technol 39(8):2631–2635

    Article  CAS  PubMed  Google Scholar 

  • Natarajan MR, Nye J, Wu W-M, Wang H, Jain MK (1997) Reductive dechlorination of PCB contaminated Raisin River sediments by anaerobic microbial granules. Biotechnol Bioeng 55:181–190

    Article  Google Scholar 

  • Park J-W, Krumins V, Kjellerup BV, Fennell DE, Rodenburg LA, Sowers KR, Kerkhof LJ, Häggblom MM (2011) The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms. Appl Microbiol Biotechnol 89:2005–2017

    Article  CAS  PubMed  Google Scholar 

  • Payne RB, Chun C, May HD, Sowers KR (2011) Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium. Environ Sci Technol 45:8772–8779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne RB, Fagervold SK, May HD, Sowers KR (2013) Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria. Environ Sci Technol 47:3807–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56(1):63–77

    Article  CAS  PubMed  Google Scholar 

  • Pulliam Holoman TR, Elberson MA, Cutter LA, May HD, Sowers KR (1998) Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl Environ Microbiol 64:3359–3367

    PubMed Central  Google Scholar 

  • Rhee GY, Sokol RC, Bethoney CM, Cho YC, Frohnhoefer RC, Erkkila T (2001) Kinetics of polychlorinated biphenyl dechlorination and growth of dechlorinating microorganisms. Environ Toxicol Chem 20:721–726

    CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2002) Environmental organic chemistry. Wiley, Hoboken

    Book  Google Scholar 

  • Sowers KR, May HD (2013) In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? Curr Opin Biotech 24:482–488

    Article  CAS  PubMed  Google Scholar 

  • Tiedje JM, Quensen JF 3rd, Chee-Sanford J, Schimel JP, Boyd SA (1993) Microbial reductive dechlorination of PCBs. Biodegradation 4(4):231–240

    Article  CAS  PubMed  Google Scholar 

  • Van Dort HM, Smullen LA, May RJ, Bedard DL (1997) Priming microbial meta-dechlorination of polychlorinated biphenyls that have persisted in Housatonic River sediments for decades. Environ Sci Technol 31(11):3300–3307

    Article  Google Scholar 

  • Wang S, Chng KR, Wilm A, Zhao S, Yang K-L, Nagarajan N, He J (2014) Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc Natl Acad Sci USA 111(33):12103–12108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts JEM, Fagervold SK, Sowers KR, May HD (2005) A PCR based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology 151:2039–2046

    Article  CAS  PubMed  Google Scholar 

  • Winchell LJ, Novak PJ (2008) Enhancing polychlorinated biphenyl dechlorination in fresh water sediment with biostimulation and bioaugmentation. Chemosphere 71:176–182

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wiegel J (1997) Two anaerobic polychlorinated biphenyl-dehalogenating enrichments that exhibit different para-dechlorination specificities. Appl Environ Microbiol 63(12):4826–4832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QZ, Bedard DL, Wiegel J (1996) Influence of incubation temperature on the microbial reductive dechlorination of 2,3,4,6-tetrachlorobiphenyl in two freshwater sediments. Appl Environ Microbiol 62(11):4174–4179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QZ, Bedard DL, Wiegel J (1999) 2,6-dibromobiphenyl primes extensive dechlorination of Aroclor 1260 in contaminated sediment at 8–30 °C by stimulating growth of PCB-dehalogenating microorganisms. Environ Sci Technol 33(4):595–602

    Article  CAS  Google Scholar 

  • Wu Q, Sowers KR, May HD (2000) Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines in a defined, sediment-free medium. Appl Environ Microbiol 66(1):49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Milliken CE, Meier GP, Watts GEM, Sowers KR, May HD (2002a) Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism. Environ Sci Technol 36(15):3290–3294

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Watts JEM, Sowers KR, May HD (2002b) Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Appl Environ Microbiol 68:807–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Bouwer EJ, Ball WP (1998) Bioavailability of hydrophobic organic contaminants: effects and implications of sorption-related mass transfer on bioremediation. Groundwater Monit Rem 18(1):126–138

    Article  Google Scholar 

  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12(4):1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Zhen H, Du S, Rodenburg LA, Mainelis G, Fennell DE (2014) Reductive dechlorination of 1,2,3,7,8-pentachlorodibenzo-p-dioxin and Aroclor 1260, 1254 and 1242 by a mixed culture containing Dehalococcoides mccartyi strain 195. Wat Res 52:51–62

    Article  CAS  Google Scholar 

  • Zwiernik M, Quensen JF III, Boyd SA (1998) FeSO4 amendments stimulate extensive anaerobic PCB dechlorination. Environ Sci Technol 32(21):3360–3365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Sowers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

May, H.D., Sowers, K.R. (2016). “Dehalobium chlorocoercia” DF-1—from Discovery to Application. In: Adrian, L., Löffler, F. (eds) Organohalide-Respiring Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49875-0_24

Download citation

Publish with us

Policies and ethics