Advertisement

Dehalobium chlorocoercia” DF-1—from Discovery to Application

  • Harold D. May
  • Kevin R. SowersEmail author
Chapter

Abstract

Dehalobium chlorocoercia” strain DF-1 is an organohalide respiring ultramicrobacterium isolated from a tidal estuary of Charleston Harbor using a polychlorinated biphenyl (PCB) congener as the sole electron acceptor. Organohalide respiration occurs by dechlorination of PCB congeners with doubly flanked chlorines, but this strain is also capable of dechlorinating chlorobenzenes with doubly flanked chlorines and tetra- and tri-chloroethene to a mixture of cis- and trans-1,2-dichloroethene. The range of PCB congeners dechlorinated from an Aroclor is limited in comparison with other PCB respiring strains; however, “D. chlorocoercia” strain DF-1 is capable of dechlorinating PCBs at environmentally relevant concentrations that are typically below saturation in water. In sediment-free medium an unidentified water-soluble factor from a Desulfovibrio sp. is required for growth. “D. chlorocoercia” strain DF-1 is osmotolerant, enabling it to grow and dechlorinate PCBs in sediments ranging from freshwater to marine. What follows is a description of “D. chlorocoercia” strain DF-1 and some of its related PCB respiring species from the perspective of environmental detection, dechlorination pathways and kinetics , biostimulation, electrostimulation, and finally bioaugmentation to enhance PCB degradation in sediments.

Keywords

Reductive Dechlorination Dechlorination Rate Chlorinate Ethene Strain LB400 Sediment Microcosm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abraham W-R, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253CrossRefPubMedGoogle Scholar
  2. Abramowicz DA (1995) Aerobic and anaerobic PCB biodegradation in the environment. Environ Health Perspect 103(Suppl 5):97–99CrossRefPubMedPubMedCentralGoogle Scholar
  3. Abramowicz DA, Brennan MJ, Van Dort HM, Gallagher EL (1993) Factors influencing the rate of polychlorinated biphenyl dechlorination in Hudson River sediments. Environ Sci Technol 27:1125–1131CrossRefGoogle Scholar
  4. Adrian L, Dudkova V, Demnerova K, Bedard DL (2009) “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 75(13):4516–4524CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ahmed M, Focht DD (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol 19:47–52CrossRefPubMedGoogle Scholar
  6. Bedard DL (2003) Polychlorinated biphenyls in aquatic sediments: environmental fate and outlook for biological treatment. In: Häggblom M, Bossert I (eds) In Dehalogenation: microbial processes and environmental applications. Kluwer Press, The Netherlands, pp 443–465Google Scholar
  7. Bedard DL, Smullen LA, DeWeerd KA, Dietrich DK, Frame GM, May RJ, Principe JM, Rouse TO, Fessler WA, Nicholson JS (1995) Chemical activation of microbially-mediated PCB dechlorination: A field study. Organohalog Compd 24:23–28Google Scholar
  8. Bedard DL, VanDort HM, May RJ, Smullen LA (1997) Enrichment of microorganisms that sequentially meta, para-dechlorinate the residue of Aroclor 1260 in Housatonic River sediment. Environ Sci Technol 31(11):3308–3313CrossRefGoogle Scholar
  9. Bedard DL, VanDort H, Deweerd KA (1998) Brominated biphenyls prime extensive microbial reductive dehalogenation of Aroclor 1260 in Housatonic River sediment. Appl Environ Microbiol 64(5):1786–1795PubMedPubMedCentralGoogle Scholar
  10. Bedard DL, Van Slyke Jerzak G, Bailey JJ (2003) Strategies for the selective enrichment of microorganisms carrying out reductive dechlorination of polychlorinated biphenyls in freshwater sediments. Fresenius Environ Bull 12(3):276–285Google Scholar
  11. Bedard DL, Ritalahti KM, Löffler FE (2007) The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 73(8):2513–2521Google Scholar
  12. Berkaw M, Sowers KR, May HD (1996) Anaerobic ortho dechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Appl Environ Microbiol 62(7):2534–2539PubMedPubMedCentralGoogle Scholar
  13. Bhatt P, Kumar MS, Mudliar S, Chakrabarti T (2007) Biodegradation of chlorinated compounds—a review. Crit Rev Environ Sci Technol 37(2):165–198CrossRefGoogle Scholar
  14. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485CrossRefPubMedGoogle Scholar
  15. Brown JJF, Wagner RE, Bedard DL, Brennan MJ, Carnahan JC, May RJ (1984) PCB transformations in upper Hudson sediments. Northeast Environ Sci 3:167–179Google Scholar
  16. Bruce M, Henry PG (2010) Biostimulation for anaerobic bioremediation of chlorinated solvents. In: Stroo HF, Ward CH (eds) In Situ remediation of chlorinated solvent plumes. Springer Science + Business Media, LLC, pp 357–423. doi: 10.1007/978-1-4419-1401-9 12
  17. Cho Y-C, Sokol RC, Rhee G-Y (2002) Kinetics of polychlorinated biphenyl dechlorination by Hudson River, New York, USA, sediment microorganisms. Environ Toxicol Chem 21(4):715–719CrossRefPubMedGoogle Scholar
  18. Cho YC, Sokol RC, Frohnhoefer RC, Rhee GY (2003) Reductive dechlorination of polychlorinated biphenyls: threshold concentration and dechlorination kinetics of individual congeners in Aroclor 1248. Environ Sci Technol 37:5651–5656CrossRefPubMedGoogle Scholar
  19. Cho Y-C, Oostrofsky EB, Rhee G-Y (2004) Effects of a rhamnolipid biosurfactant on the reductive dechlorination of polychlorinated biphenyls by St. Lawrence River (North America) microorganisms. Environ Toxicol Chem 23(6):1425–1430CrossRefPubMedGoogle Scholar
  20. Chun CL, Payne RB, Sowers KR, May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Wat Res 47(1):141–152CrossRefGoogle Scholar
  21. Cutter L, Sowers KR, May HD (1998) Microbial dechlorination of 2,3,5,6-tetrachlorobiphenyl under anaerobic conditions in the absence of soil or sediment. Appl Environ Microbiol 64(8):2966–2969PubMedPubMedCentralGoogle Scholar
  22. Cutter LA, Watts JEM, Sowers KR, May HD (2001) Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol 3(11):699–709CrossRefPubMedGoogle Scholar
  23. Deweerd KA, Bedard DL (1999) Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs. Environ Sci Technol 33(12):2057–2063CrossRefGoogle Scholar
  24. Drenzek NJ, Eglinton TI, Wirsen CO, May HD, Wu Q, Sowers KR, Reddy CM (2001) The absence and application of stable carbon isotopic fractionation during the reductive dechlorination of polychlorinated biphenyls. Environ Sci Tech 35:3310–3313CrossRefGoogle Scholar
  25. Drenzek NJ, Eglinton TI, Wirsen CO, Sturchio NC, Heraty LJ, Sowers KR, Wu Q, May HD, Reddy CM (2004) Invariant chlorine isotopic signatures during microbial PCB reductive dechlorination. Environ Pollut 128(3):445–448CrossRefPubMedGoogle Scholar
  26. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes characterization of a gene coding for 16S ribosomal RNA. Nuc Acids Res 17:7843–7853CrossRefGoogle Scholar
  27. Evans BS, Dudley CA, Klasson KT (1996) Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Appl Biochem Biotechnol 57–58:885–894CrossRefPubMedGoogle Scholar
  28. Fagervold SK, Watts JEM, May HD, Sowers KR (2005) Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl Environ Microbiol 71(12):8085–8090CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fagervold SK, May HD, Sowers KR (2007) Microbial reductive dechlorination of Aroclor 1260 in Baltimore Harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Appl Environ Microbiol 73(9):3009–3018CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fagervold SK, Watts JEM, May HD, Sowers KR (2011) Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. Wat Res 45:3899–3907CrossRefGoogle Scholar
  31. Fennell DE, Gossett JM (1998) Modeling the production of and competition for hydrogen in a dechlorinating culture. Environ Sci Technol 32(16):2450–2460CrossRefGoogle Scholar
  32. Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38(7):2075–2081CrossRefPubMedGoogle Scholar
  33. Fish KM (1996) Influence of Aroclor 1242 concentration on polychlorinated biphenyl biotransformations in Hudson River test tube microcosms. Appl Environ Microbiol 62(8):3014–3016PubMedPubMedCentralGoogle Scholar
  34. Friedman C, Burgess R, Cantwell M, Ho K, Lohmann R (2009) Comparing polychaete and polyethylene uptake to assess sediment resuspension effects on PCB bioavailability. Environ Sci Technol 43(8):2865–2870CrossRefPubMedGoogle Scholar
  35. Furukawa K (1976) Microbial metabolism of polychlorinated biphenyls: studies on relative degradability of polychlorinated biphenyl components by Alcaligenes sp. J Agric Food Chem 24:251–256CrossRefPubMedGoogle Scholar
  36. Ghosh U, Zimmerman J, Luthy RG (2003) PCB and PAH speciation among particle types in contaminated sediments and effects on PAH bioavailability. Environ Sci Technol 37:2209–2217CrossRefPubMedGoogle Scholar
  37. Heijnen JJ, van Dijken JP (1992) In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858CrossRefPubMedGoogle Scholar
  38. Jarman WM, Hilkert A, Bacon CE, Collister JW, Ballschmiter K, Risebrough RW (1998) Compound-specific carbon isotopic analysis of Aroclors, Clophens, Kaneclors, and Phenoclors. Environ Sci Technol 32(6):833–836CrossRefGoogle Scholar
  39. Jin S, Fallgren PH (2014) Feasibility of using bioelectrochemical systems for bioremediation. In: Das S (ed) Microbial biodegradation and bioremediation. Elsevier, Amsterdam, pp 389–406Google Scholar
  40. Kjellerup BV, Sun X, Ghosh U, May HD, Sowers KR (2008) Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities. Environ Microbiol 10:1296–1309CrossRefPubMedGoogle Scholar
  41. Krumins V, Park JW, Son EK, Rodenburg LA, Kerkhof LJ, Häggblom MM, Fennell DE (2009) PCB dechlorination enhancement in Anacostia River sediment microcosms. Wat Res 43(18):4549–4558. doi: 10.1016/j.watres.2009.08.003 CrossRefGoogle Scholar
  42. LaRoe SL, Fricker AD, Bedard DL (2014) Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination Process N. Environ Sci Technol 48:9187–9196CrossRefPubMedGoogle Scholar
  43. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligate organohalide-respiring anaerobic bacteria, relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635CrossRefPubMedGoogle Scholar
  44. Lombard NJ, Ghosh U, Kjellerup BV, Sowers KR (2014) Kinetics and threshold level of 2,3,4,5-tetrachlorobiphenyl dechlorination by an organohalide respiring bacterium. Environ Sci Technol 48(8):4353–4360CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lu L, Yazdi H, Jin S, Zuo Y, Fallgren PH, Ren ZJ (2014) Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J Haz Mat 274:8–15CrossRefGoogle Scholar
  46. Marco-Urrea E, Nijenhuis I, Adrian L (2011) Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45:1555–1562CrossRefPubMedGoogle Scholar
  47. Master ER, Lai VW, Kuipers B, Cullen WR, Mohn WW (2002) Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36:100–103CrossRefPubMedGoogle Scholar
  48. May HD, Miller GS, Kjellerup BV, Sowers KR (2008a) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74(7):2089–2094CrossRefPubMedPubMedCentralGoogle Scholar
  49. May HD, Miller GS, Kjellerup BV, Sowers KR (2008b) Author's Correction—Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74(19):6169–6170Google Scholar
  50. Miller GS, Milliken CE, Sowers KR, May HD (2005) Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-1. Environ Sci Technol 39(8):2631–2635CrossRefPubMedGoogle Scholar
  51. Natarajan MR, Nye J, Wu W-M, Wang H, Jain MK (1997) Reductive dechlorination of PCB contaminated Raisin River sediments by anaerobic microbial granules. Biotechnol Bioeng 55:181–190CrossRefGoogle Scholar
  52. Park J-W, Krumins V, Kjellerup BV, Fennell DE, Rodenburg LA, Sowers KR, Kerkhof LJ, Häggblom MM (2011) The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms. Appl Microbiol Biotechnol 89:2005–2017CrossRefPubMedGoogle Scholar
  53. Payne RB, Chun C, May HD, Sowers KR (2011) Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium. Environ Sci Technol 45:8772–8779CrossRefPubMedPubMedCentralGoogle Scholar
  54. Payne RB, Fagervold SK, May HD, Sowers KR (2013) Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria. Environ Sci Technol 47:3807–3815CrossRefPubMedPubMedCentralGoogle Scholar
  55. Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56(1):63–77CrossRefPubMedGoogle Scholar
  56. Pulliam Holoman TR, Elberson MA, Cutter LA, May HD, Sowers KR (1998) Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl Environ Microbiol 64:3359–3367PubMedCentralGoogle Scholar
  57. Rhee GY, Sokol RC, Bethoney CM, Cho YC, Frohnhoefer RC, Erkkila T (2001) Kinetics of polychlorinated biphenyl dechlorination and growth of dechlorinating microorganisms. Environ Toxicol Chem 20:721–726PubMedGoogle Scholar
  58. Schwarzenbach RP, Gschwend PM, Imboden DM (2002) Environmental organic chemistry. Wiley, HobokenCrossRefGoogle Scholar
  59. Sowers KR, May HD (2013) In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? Curr Opin Biotech 24:482–488CrossRefPubMedGoogle Scholar
  60. Tiedje JM, Quensen JF 3rd, Chee-Sanford J, Schimel JP, Boyd SA (1993) Microbial reductive dechlorination of PCBs. Biodegradation 4(4):231–240CrossRefPubMedGoogle Scholar
  61. Van Dort HM, Smullen LA, May RJ, Bedard DL (1997) Priming microbial meta-dechlorination of polychlorinated biphenyls that have persisted in Housatonic River sediments for decades. Environ Sci Technol 31(11):3300–3307CrossRefGoogle Scholar
  62. Wang S, Chng KR, Wilm A, Zhao S, Yang K-L, Nagarajan N, He J (2014) Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc Natl Acad Sci USA 111(33):12103–12108CrossRefPubMedPubMedCentralGoogle Scholar
  63. Watts JEM, Fagervold SK, Sowers KR, May HD (2005) A PCR based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology 151:2039–2046CrossRefPubMedGoogle Scholar
  64. Winchell LJ, Novak PJ (2008) Enhancing polychlorinated biphenyl dechlorination in fresh water sediment with biostimulation and bioaugmentation. Chemosphere 71:176–182CrossRefPubMedGoogle Scholar
  65. Wu Q, Wiegel J (1997) Two anaerobic polychlorinated biphenyl-dehalogenating enrichments that exhibit different para-dechlorination specificities. Appl Environ Microbiol 63(12):4826–4832PubMedPubMedCentralGoogle Scholar
  66. Wu QZ, Bedard DL, Wiegel J (1996) Influence of incubation temperature on the microbial reductive dechlorination of 2,3,4,6-tetrachlorobiphenyl in two freshwater sediments. Appl Environ Microbiol 62(11):4174–4179PubMedPubMedCentralGoogle Scholar
  67. Wu QZ, Bedard DL, Wiegel J (1999) 2,6-dibromobiphenyl primes extensive dechlorination of Aroclor 1260 in contaminated sediment at 8–30 °C by stimulating growth of PCB-dehalogenating microorganisms. Environ Sci Technol 33(4):595–602CrossRefGoogle Scholar
  68. Wu Q, Sowers KR, May HD (2000) Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines in a defined, sediment-free medium. Appl Environ Microbiol 66(1):49–53CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wu Q, Milliken CE, Meier GP, Watts GEM, Sowers KR, May HD (2002a) Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism. Environ Sci Technol 36(15):3290–3294CrossRefPubMedGoogle Scholar
  70. Wu Q, Watts JEM, Sowers KR, May HD (2002b) Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Appl Environ Microbiol 68:807–812CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhang W, Bouwer EJ, Ball WP (1998) Bioavailability of hydrophobic organic contaminants: effects and implications of sorption-related mass transfer on bioremediation. Groundwater Monit Rem 18(1):126–138CrossRefGoogle Scholar
  72. Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12(4):1011–1020CrossRefPubMedGoogle Scholar
  73. Zhen H, Du S, Rodenburg LA, Mainelis G, Fennell DE (2014) Reductive dechlorination of 1,2,3,7,8-pentachlorodibenzo-p-dioxin and Aroclor 1260, 1254 and 1242 by a mixed culture containing Dehalococcoides mccartyi strain 195. Wat Res 52:51–62CrossRefGoogle Scholar
  74. Zwiernik M, Quensen JF III, Boyd SA (1998) FeSO4 amendments stimulate extensive anaerobic PCB dechlorination. Environ Sci Technol 32(21):3360–3365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Marine and Environmental TechnologyDepartment of Marine Biotechnology, University of Maryland Baltimore CountyBaltimoreUSA
  2. 2.Marine Medicine and Environmental Science Center, Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations