Current and Future Bioremediation Applications: Bioremediation from a Practical and Regulatory Perspective

  • Robert J. SteffanEmail author
  • Charles E. Schaefer


Chlorinated solvents have been a primary focus of the remediation industry since the 1980s, and many remedial technologies have been developed, tested, and applied to remove these constituents from contaminated aquifers. The relative ease of stimulating organohalide-respiring bacteria in situ and the availability of low cost electron donor substrates and effective bioaugmentation cultures have allowed in situ bioremediation technologies to be applied successfully at thousands of sites around the world. Typically, the success of the remediation is dependent more on the site characteristics (e.g., geochemistry, geology, hydrology, contaminant concentration, etc.) than the fidelity of the microbes. As we begin to address the most challenging contaminated sites that remain to be remediated, including those with free product contamination, complicated geologies (e.g., low permeability soils or fractured rock), or complex contaminant mixtures, in situ bioremediation may not be the sole technology applied at these sites but it will likely be an important component of many remedies. Therefore, fundamental understandings of microbiology and the development of novel application approaches remain essential to ensure continued success in remediation of the most difficult chlorinated solvent-contaminated sites.


Electron Donor Hydraulic Fracture Reductive Dechlorination Daughter Product Chlorinate Solvent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamson DT, Newell CJ (2009) Support of source zone bioremediation through endogenous biomass decay and electron donor recycling. Bioremediat J 13:29–40CrossRefGoogle Scholar
  2. Adamson DT, McDade JM, Hughes JB (2003) Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533CrossRefPubMedGoogle Scholar
  3. Adamson DT, Lyon DY, Hughes JB (2004) Flux and product distribution during biological treatment of tetrachloroethene dense non-agueous-phase liquid. Environ Sci Technol 38:2021–2028CrossRefPubMedGoogle Scholar
  4. Amos BK, Suchomel EJ, Pennell KD, Löffler FE (2008) Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone. Water Res 42:2963–2974CrossRefPubMedGoogle Scholar
  5. Amos BK, Suchomel EJ, Pennell KD, Löffler FE (2009) Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-DNAPL dissolution. Environ Sci Technol 43:1977–1985CrossRefPubMedGoogle Scholar
  6. Aziz CE, Wymore RA, Steffan RJ (2013) Bioaugmentation considerations. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugmentation for groundwater remediation. Springer Science+Business Media, New York, pp 141–169CrossRefGoogle Scholar
  7. Bass DH, Hastings NA, Brown RA (2000) Performance of air sparging systems: a review or case studies. J Hazard Mater 72:101–119CrossRefPubMedGoogle Scholar
  8. Beeman RE, Bleckmann CA (2002) Sequential anaerobic–aerobic treatment of an aquifer contaminated by halogenated organics: field results. J Contam Hydrol 57:147–159CrossRefPubMedGoogle Scholar
  9. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67CrossRefGoogle Scholar
  10. Borden RC (2007) Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. J Contam Hydrol 94:1–12CrossRefPubMedGoogle Scholar
  11. Borden RC, Rodriguez BX (2007) Evaluation of slow release substrates for anaerobic bioremediation. Bioremediat J 10:59–69CrossRefGoogle Scholar
  12. Borden RC, Beckwith WJ, Lieberman MT, Akladiss N, Hill SR (2007) Enhanced anaerobic bioremediation of a TCE source at the Tarheel Army Missile Plant using EOS. Remediation 17:5–19CrossRefGoogle Scholar
  13. Cápiro NL, Wang Y, Hatt JK, Lebrón CA, Pennell KD, Löffler FE (2014) Distribution of organohalide-respiring bacteria between solid and aqueous phases. Environ Sci Technol 48:10878–10887CrossRefPubMedGoogle Scholar
  14. Chambon JC, Broholm MM, Binning PJ, Bjerg PL (2010a) Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture–clay matrix system. J Contam Hydrol 112:77–90CrossRefPubMedGoogle Scholar
  15. Chambon JC, Broholm MM, Binning PJ, Bjerg PL (2010b) Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture–clay matrix system. J Contam Hydrol 112:77–90CrossRefPubMedGoogle Scholar
  16. Christiansen CM, Damgaard I, Broholm M, Kessler T, Klint KE, Niulsson B, Bjerg PL (2010) Comparison of delivery methods for enhanced in situ remediation in clay till. Ground Water Monitor Remediat 30:107–122CrossRefGoogle Scholar
  17. Chu M, Kitanidis PK, McCarty PL (2004) Possible factors controlling the effectiveness of bioenhanced dissolution of non-aqueous phase tetrachloroethene. Adv Water Resour 27:601–615CrossRefGoogle Scholar
  18. Clement TP (1997) RT3D—a computer code for simulating reactive multi-species transport in 3-dimensional groundwater aquifers. Pacific Northwest National Laboratory Report, PNNL-11720.
  19. Clement TP, Peyton BM, Skeen RS, Jennings DA, Petersen JN (1997) Microbial growth and transport in porous media under denitrification conditions: Experiments and simulations. J Contam Hydrol 24:269–285CrossRefGoogle Scholar
  20. Cupples AM, Spormann AM, McCarty PL (2004) Vinyl chloride and cis-dichloroethene dechlorination kinetics and microorganism growth under substrate limiting conditions. Environ Sci Technol 38:1102–1107CrossRefPubMedGoogle Scholar
  21. Damgaard I, Bjerg PL, Bælum J, Scheutz C, Hunkeler D, Jacobsen CS, Tuxen N, Broholm MM (2013) Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis. J Contam Hydrol 146:37–50CrossRefPubMedGoogle Scholar
  22. DeFlaun MF, Steffan RJ (2002) Bioaugmentation. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, NY, pp 434–442Google Scholar
  23. Delgado AG, Fajardo-Williams D, Popat SC, Torres CI, Krajmalnik-Brown R (2014) Successful operation of continuos reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Appl Microbiol Biotechnol 98:2729–2737CrossRefPubMedGoogle Scholar
  24. Ellis DE, Lutz EJ, Odom JM, Buchanan RJ Jr, Bartlett CL, Lee MD, Harkness MR, Deweerd KA (2000a) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260CrossRefGoogle Scholar
  25. Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, Deweerd KA (2000b) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260CrossRefGoogle Scholar
  26. Fennell DE, Carroll AB, Gossett JM, Zinder SH (2001) Assessment of indigenous reductive dechlorinating potential at a TCE contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35:1830–1839CrossRefPubMedGoogle Scholar
  27. Frascari D, Zanaroli G, Danko AS (2015) In situ cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399CrossRefPubMedGoogle Scholar
  28. Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151PubMedPubMedCentralGoogle Scholar
  29. Haest PJ, Springael D, Smolders E (2010) Dechlorination kinetics of TCE at toxic TCE concentrations: assessment of different models. Water Res 44:331–339CrossRefPubMedGoogle Scholar
  30. Harkness MR, Bracco AA, Brennan MJ Jr, DeWeerd KA, Spivack JL (1999) Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ Sci Technol 33:1100–1109CrossRefGoogle Scholar
  31. Hatzinger PB, Diebold J, Yates CA, Cramer RJ (2006) Field demonstration of in situ perchlorate bioremediation in groundwater (Chap. 14). In: Gu B, Coates JC (eds) perchlorate: environment occurrence, interactions, and treatment. Springer, New York, pp 311–341CrossRefGoogle Scholar
  32. He J, Ritalhati KM, Yang KL, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65CrossRefPubMedGoogle Scholar
  33. He YT, Wilson JT, Wilkin RT (2008) Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater. Environ Sci Technol 42:6690–6696CrossRefPubMedGoogle Scholar
  34. He YT, Wilson JT, Wilkin RT (2010) Impact of iron sulfide transformation on trichloroethylene degradation. Geochim Cosmochim Acta 74:2025–2039CrossRefGoogle Scholar
  35. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68(2):485–495Google Scholar
  36. Hood ED, Major DW, Quinn JW, Yoon W-S, Gavaskar A, Edwards EA (2008) Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34, Cape Canaveral Air Force Station. Ground Water Monitor Remediat 28:98–107CrossRefGoogle Scholar
  37. Interstate Technology and Regulatory Council (ITRC) (2007) In situ bioremediation of chlorinated ethene DNAPL source zones: case studies. Washington, D.CGoogle Scholar
  38. Kennedy LG, Everett JW, Gonzales J (2006a) Assessment of biogeochemical natural attenuation and treatment of chlorinated solvents, Altus Air Force Base, Altus, Oklahoma. J Contam Hydrol 83:221–236CrossRefPubMedGoogle Scholar
  39. Kennedy LG, Everett JW, Gonzales J (2006b) Assessment of biogeochemical natural attenuation and treatment of chlorinated solvents, Altus Air Force Base, Altus, Oklahoma. J Contam Hydrol 83:221–236CrossRefPubMedGoogle Scholar
  40. Kim Y, Istok JD, Semprini L (2004) Push-pull tests for assessing in situ aerobic cometabolism. Groundwater 42:329–337CrossRefGoogle Scholar
  41. Lacroix E, Brovelli A, Barry DA, Holliger C (2014a) Use of silicate minerals for pH control during reductive dechlorination of chloroethenes in batch cultures of different microbial consortia. Appl Environ Microbiol 80:3858–3867CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lacroix E, Brovelli A, Maillard J, Rhorbach-Brandt E, Barry DA, Holliger C (2014b) Use of silicate minerals for long-term pH control during reductive dechlorination of high tetrachloroethene concentrations in continuous flow-through columns. Sci Total Environ 482–483:23–35CrossRefPubMedGoogle Scholar
  43. Lee MD, Odom JM, Buchman RJ (1998) New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Ann Rev Microbiol 52:423–452CrossRefGoogle Scholar
  44. Lee A, Abrams SH, Moskal E, Ciambruschini S, Moss D (2013) Chemical and biological reduction of PCE by pneumatic fracturing and injection of ZVI in saprolite. Remediat J 23:7–21CrossRefGoogle Scholar
  45. Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL Jr, Barcelona MJ, Petrovskis E, Hickey R, Tiedje JM, Adriaens P (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431CrossRefGoogle Scholar
  46. Lohner ST, Tiehm A (2009) Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation. Environ Sci Technol 43:7098–7104CrossRefPubMedGoogle Scholar
  47. Lohner ST, Becker D, Mangold K-M, Tiehm A (2011) Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environ Sci Technol 45:6191–6197CrossRefGoogle Scholar
  48. Löffler FE, Ritalahti KM, Zinder SH (2013) Dehalococcoides and reductive dechlorination of chlorinated solvents. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugmentation for groundwater remediation, vol 5. SERDP ESTCP Environmental Remediation Technology. Springer New York, pp 39–88. doi: 10.1007/978-1-4614-4115-1_2
  49. Lu X, Wilson JT, Kampbell DH (2006) Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140CrossRefPubMedGoogle Scholar
  50. Ma X, Novak PJ, Semmens MJ, Clapp LW, Hozalaski RM (2006) Comparison of pulsed and continuous addition of H2 gas via membranes for stimulating PCE biodegradation in soil columns. Water Res 40:1155–1166CrossRefPubMedGoogle Scholar
  51. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116CrossRefPubMedGoogle Scholar
  52. Manoli G, Chambon JC, Bjerg PL, Scheutz C, Binning PJ, Broholm MM (2012) A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till. J Contam Hydrol 131:64–78CrossRefPubMedGoogle Scholar
  53. Mao X, Wang J, Ciblak A, Cox EE, Riis C, Terkelsen M, Gent DB, Alshawabkeh AN (2012) Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. J Hazard Mater 213–14:311–317CrossRefGoogle Scholar
  54. Maymó-Gatell X, Chien Y-T, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571CrossRefPubMedGoogle Scholar
  55. Maymó-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-dichloroethene and vinyl chloride by Dehalococcoides ethenogenes strain 195. Environ Sci Technol 35:516–521CrossRefPubMedGoogle Scholar
  56. McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT, Carrothers TJ (1998) Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol 32:88–100CrossRefGoogle Scholar
  57. McCarty PL, Chu MY, Kitanidis PK (2007) Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. Eur J Soil Biol 43:276–282CrossRefGoogle Scholar
  58. McGuire TM, Newell CJ, Looney BB, Vangelas KM, Sink CH (2004) Historical analysis of monitored natural attenuation: a survey of 191 chlorinated solvent sites and 45 solvent plumes. Remediat J 15:99–112CrossRefGoogle Scholar
  59. McGuire TM, McDade JM, Newell CJ (2006) Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Groundwater Monitor Remediat 26:73–84CrossRefGoogle Scholar
  60. Mora RH, Macbeth TW, MacHarg T, Gundarlahalli J, Holbrook H, Schiff P (2008) Enhanced bioremediation using whey powder for a trichloroethene plume in a high-sulfate, fractured granitic aquifer. Remediat J 18:7–30CrossRefGoogle Scholar
  61. Mundle K, Renyolds DA, West MR, Kueper BH (2007) Concentration rebound following in situ chemical oxidation in fractured clay. Ground Water 35:1077–1088Google Scholar
  62. National Research Council (NRC) (2013) Alternatives for managing the nation’s complex contaminated groundwater sites. National Academies Press, Washington, DC, 422 ppGoogle Scholar
  63. Nyer EK, Payne FC, Sutherson S (2003) Discussion of environment vs. bacteria or let’s play, ‘name that bacteria’. Ground Water Monitor Remediat 23:36–45CrossRefGoogle Scholar
  64. Pérez-de-Mora A, Zila A, McMaster ML, Edwards EA (2014) Bioremediation of chlorinated ethenes in fractured bedrock and associated changes in dechlorinating and nondechlorinating microbial populations. Environ Sci Technol 48:5770–5779CrossRefPubMedGoogle Scholar
  65. Phanikumar MS, Hyndman DW, Zhao X, Dybas MJ (2005) A three-dimensional model of microbial transport and biodegradation at the Schoolcraft, Michigan, site. Water Resour Res 41:W05011. doi: 10.1029/2004WR003376
  66. Rabbi MF, Clark B, Gale RJ, Ozsu-Acar E, Pardue J, Jackson A (2000) In situ TCE bioremediation study using electrokinetic cometabolite injection. Waste Manage 20:279–286CrossRefGoogle Scholar
  67. Révész KM, Lollar BS, Kirshtein JD, Tiedeman CR, Imbrigiotta TE, Goode DJ, Shapiro AM, Voytek MA, Lacombe PJ, Busenberg E (2014) Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks. J Contam Hydrol 156:62–77CrossRefPubMedGoogle Scholar
  68. Rivett MO, Chapman SW, Allen-King RM, Feenstra S, Cherry JA (2006) Pump-and-treat remediation of chlorinated solvent contamination at a controlled field-experiment site. Environ Sci Technol 40:6770–6781CrossRefPubMedGoogle Scholar
  69. Santharam S, Ibbini J, Davis LC, Erickson LE (2011) Field study of biostimulation and bioaugmentation for remediation of tetrachloroethene in groundwater. Remediat J 21:51–68CrossRefGoogle Scholar
  70. Schaefer CE, Vainberg S, Condee C, Steffan RJ (2009) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75:141–148CrossRefPubMedGoogle Scholar
  71. Schaefer CE, Lippincott D, Steffan RJ (2010a) Field scale evaluation of bioaugmentation dosage for treating chlorinated ethenes. Ground Water Monitor Remediat 30:113–124CrossRefGoogle Scholar
  72. Schaefer CE, Towne RM, Vainberg S, McCray JE, Steffan RJ (2010b) Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks. Environ Sci Technol 44:4958–4964CrossRefPubMedGoogle Scholar
  73. Scheutz C, Durant ND, Dennis P, Hansen MH, Jorgensen T, Jakobsen R, Cox EE, Bjerg PL (2008) Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ Sci Technol 42:9302–9309CrossRefPubMedGoogle Scholar
  74. Scheutz C, Broholm MM, Durant ND, Weeth EB, Jorgensen TH, Dennis P, Jacobsen CS, Cox EE, Chambon JC, Bjerg PL (2010) Field evaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till. Environ Sci Technol 44:5134–5141CrossRefPubMedGoogle Scholar
  75. Schneidewind U, Haest PJ, Atashgahi S, Maphosa F, Hamonts K, Maesen M, Calderer M, Seuntjens P, Smidt H, Springael D, Dejonghe W (2014) Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources. J Contam Hydrol 157:25–36CrossRefPubMedGoogle Scholar
  76. Semprini L (1997) Strategies for the aerobic co-metabolism of chlorinated solvents. Curr Opin Biotechnol 8:296–308CrossRefPubMedGoogle Scholar
  77. Semkiw ES, Barcelona MJ (2011) Field study of enhanced tce reductive dechlorination by a full-scale whey prb. Ground Water Monitoring & Remediation 31(1):68-78. doi: 10.1111/j.1745-6592.2010.01321.x
  78. Sewell GW, Gibson SA (1991) Stimulation of the reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by the addition of toluene. Environ Sci Technol 25:982–984Google Scholar
  79. Silva JAK, Smith MM, Munakata-Marr J, McCray JE (2012) The effect of system variables on in situ sweep-efficiency improvements via viscosity modification. J Contam Hydrol 136–137:117–130CrossRefPubMedGoogle Scholar
  80. Sleep BE, Seepersad DJ, Mo K, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, LeBron C, Sherwood Lollar B, Major DW, Edwards EA (2006) Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623–3633CrossRefPubMedGoogle Scholar
  81. Smith RL, Harvey RW, LeBlanc DR (1991) Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies. J Contam Hydrol 7:285–300CrossRefGoogle Scholar
  82. Steffan RJ, Sewell GW (2011) Advances in bioremediation of aquifers (Chap. 11). In: Quercia FF, Vidojevic D (eds) Clean soil and safe water, NATO science for peace and security series C: environmental security. Springer Science+Business Media B.V., pp 143–151. ISBN 978-94-007-2239-2Google Scholar
  83. Steffan RJ, Vainberg S (2013) Production and handling of Dehalococcoides bioaugmentation cultures. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugmentation for groundwater remediation. Springer Science+Business Media, New York, pp 89–113CrossRefGoogle Scholar
  84. Steffan RJ, Sperry KL, Walsh MT, Vainberg S, Condee CW (1999) Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ Sci Technol 33:2771–2781CrossRefGoogle Scholar
  85. Strong M, Owens D, Ventura, B, Smith L, Liskowitz JJ (2004) Comparison of pneumatic and hydraulic fracturing for emplacement of treatment materials in low-permeability formations. In: Proceedings of the fourth international conference on remediation of chlorinated and recalcitrant compounds. Battelle Press, Monterey, CAGoogle Scholar
  86. Stroo HF, Leeson A, Marqusee JA, Johnson PC, Ward CH, Kavanaugh MC, Sale TC, Newell CJ, Pennell KD, Lebrón CA, Unger M (2012) Chlorinated ethene source remediation: Lessons learned. Environ Sci Technol 46(12):6438-6447. doi: 10.1021/es204714w
  87. Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Löffler FE (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974CrossRefPubMedPubMedCentralGoogle Scholar
  88. Swift D, Rothermel J, Peterson L, Orr B, Bures GH, Weidhaas J (2012) Remediating TCE-contaminated groundwater in low-permeability media using hydraulic fracturing to emplace zero-valent iron/organic carbon amendment. Remediat J 22:49–67CrossRefGoogle Scholar
  89. Thomson NR, Hood ED, Farquhar GJ (2007) Permanganate treatment of an emplaced DNAPL source. Ground Water Monitor Remediat 27:74–85CrossRefGoogle Scholar
  90. Torlapati J, Clement TP, Schaefer CE, Lee KK (2012) Modeling Dehalococcoides sp. augmented bioremediation in a single fracture system. Ground Water Monitor Remediat 32:75–83CrossRefGoogle Scholar
  91. United States Environmental Protection Agency (USEPA) (2004) Demonstration of bioaugmentation of DNAPL through biostimulation and bioaugmentation at Launch Complex 34 Cape Canaveral Air Force station, Florida. EPA/540/R-07/007. USEPA, Washington DCGoogle Scholar
  92. United States Environmental Protection Agency (USEPA) (2014) Groundwater remedy completion strategy. OSWER9200.2-144. USEPA, Washington DCGoogle Scholar
  93. Vainberg S, Condee CW, Steffan RJ (2009) Large scale production of Dehalococcoides sp.—containing cultures for bioaugmentation. J Indust Microbiol Biotechnol 36:1189–1197CrossRefGoogle Scholar
  94. Wang F, Annable MD, Schaefer CE, Ault TD, Cho J, Jawitz JW (2014) Enhanced queous dissolution of a DNAPL source to characterize the source strength function. J Contam Hydrol 169:75–89CrossRefPubMedGoogle Scholar
  95. Weidemeier TH, Swanson MA, Moutoux DE, Gordon EK, Wilson JT, Wilson BH, Kampbell DH, Haas PE, Miller RN, Hansen JE, Chapelle FW (1998) Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater. EPA/600/R-98/128. USEPA, Washington DCGoogle Scholar
  96. Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49:242–243PubMedPubMedCentralGoogle Scholar
  97. Wu W-M, Nye J, Jain MK, Hickey RF (1998) Anaerobic dechlorination of trichloroethylene (TCE) to ethylene using complex organic materials. Water Res 32:1445–1454CrossRefGoogle Scholar
  98. Yu S, Dolan ME, Semprini L (2005) Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures. Environ Sci Technol 39:195–205CrossRefPubMedGoogle Scholar
  99. Zhang X-H, Sewell GW, Cui S-Y (2001) An improved method of hydrogen production as electron donor for anaerobic bioremediation. J Environ Sci Health A36:1661–1670CrossRefGoogle Scholar
  100. Zhuang P, Pavlostathis SG (1995) Effect of temperature, pH, and electron donor on the microbial reductive dechlorination of chloroalkenes. Chemosphere 31:3537–3548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CB&I Federal Services, LLCLawrencevilleUSA

Personalised recommendations