Natural Production of Organohalide Compounds in the Environment

  • James A. FieldEmail author


More than 5000 natural organohalogen compounds have been identified. In terrestrial environments, the bulk of the organochlorine is locked up in humic polymers, collectively accounting for a global organochlorine storage of several million Gg. Natural sources are primarily responsible for the global budget of chloromethane and chloroform. Basidiomycete fungi involved in the decomposition of forest litter produce large quantities of chlorinated phenolic methyl ethers. In marine environments naturally occurring chlorinated and brominated bipyrroles as well as methoxypolybrominated phenyl ethers biomagnify in sea mammals. There are at least five distinct halogenating enzyme systems: (1) methyl transferases; (2) heme haloperoxidases; (3) vandadium haloperoxidases; (4) flavin-dependent halogenases and (5) α-ketoglutarate/Fe(II) dependent halogenases. Natural halogenated phenolic metabolites are subject to biotransformation including O-demethylation and organohalide respiration. Naturally occurring phenolics are also polymerized by oxidative enzymes to dioxins and chlorohumus.


Natural Organic Matter Vinyl Chloride Forest Litter Organohalogen Compound Organohalide Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrahamsson K, Ekdahl A, Collen J, Pedersen M (1995) Marine algae—a source of trichloroethylene and perchloroethylene. Limnol Oceanogr 40(7):1321–1326CrossRefGoogle Scholar
  2. Ando K, Kato A, Suzuki S (1970) Isolation 2,4-dichorophenol from a soil fungus and its biological significance. Biochem Biophys Res Commun 39(6):1104. doi: 10.1016/0006-291x(70)90672-8 PubMedCrossRefGoogle Scholar
  3. Arnoldsson K, Andersson PL, Haglund P (2012) Formation of environmentally relevant brominated dioxins from 2,4,6,-tribromophenol via bromoperoxidase-catalyzed dimerization. Environ Sci Technol 46(13):7239–7244. doi: 10.1021/es301255e PubMedCrossRefGoogle Scholar
  4. Asplund G, Grimvall A, Pettersson C (1989) Naturally produced adsorbable organic halogens (AOX) in humic substances from soil and water. Sci Total Environ 81–2:239–248. doi: 10.1016/0048-9697(89)90130-7 CrossRefGoogle Scholar
  5. Asplund G, Christiansen JV, Grimvall A (1993) A chloroperoxidase-like catalyst in soil—detection and characterization of some properties. Soil Biol Biochem 25(1):41–46. doi: 10.1016/0038-0717(93)90239-8 CrossRefGoogle Scholar
  6. Ballschmiter K (2003) Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere 52(2):313–324. doi: 10.1016/s0045-6535(03)00211-x PubMedCrossRefGoogle Scholar
  7. Bastviken D, Thomsen F, Svensson T, Karlsson S, Sanden P, Shaw G, Matucha M, Oberg G (2007) Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochim Cosmochim Acta 71(13):3182–3192. doi: 10.1016/j.gca.2007.04.028 CrossRefGoogle Scholar
  8. Biester H, Keppler F, Putschew A, Martinez-Cortizas A, Petri M (2004) Halogen retention, organohalogens, and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs. Environ Sci Technol 38(7):1984–1991. doi: 10.1021/es0348492 PubMedCrossRefGoogle Scholar
  9. Breider F, Hunkeler D (2014a) Investigating chloroperoxidase-catalyzed formation of chloroform from humic substances using stable chlorine isotope analysis. Environ Sci Technol 48(3):1592–1600. doi: 10.1021/es403879e PubMedCrossRefGoogle Scholar
  10. Breider F, Hunkeler D (2014b) Mechanistic insights into the formation of chloroform from natural organic matter using stable carbon isotope analysis. Geochim Cosmochim Acta 125:85–95. doi: 10.1016/j.gca.2013.09.028 CrossRefGoogle Scholar
  11. Butler A, Sandy M (2009) Mechanistic considerations of halogenating enzymes. Nature 460(7257):848–854. doi: 10.1038/nature08303 PubMedCrossRefGoogle Scholar
  12. Cabrita MT, Vale C, Rauter AP (2010) Halogenated compounds from marine algae. Mar Drug 8(8):2301–2317. doi: 10.3390/md8082301 CrossRefGoogle Scholar
  13. Chen XP, van Pee KH (2008) Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim Biophys Sin 40(3):183–193. doi: 10.1111/j.1745-7270.2008.00390.x PubMedCrossRefGoogle Scholar
  14. Collen J, Ekdahl A, Abrahamsson K, Pedersen M (1994) The involvement of hydrogen-peroxide in the production of volatile halogenated compounds by Meristiella gelidium. Phytochemistry 36(5):1197–1202. doi: 10.1016/s0031-9422(00)89637-5 CrossRefGoogle Scholar
  15. Daferner M, Anke T, Hellwig V, Steglich W, Sterner O (1998) Strobilurin M, tetrachloropyrocatechol and tetrachloropyrocatechol methyl ether: new antibiotics from a Mycena species. J Antibiot 51(9):816–822PubMedCrossRefGoogle Scholar
  16. Dahlman O, Morck R, Ljungquist P, Reimann A, Johansson C, Boren H, Grimvall A (1993) Chlorinated structural elements in high-molecular-weight organic-matter from unpolluted waters and bleached-kraft mill effluents. Environ Sci Technol 27(8):1616–1620. doi: 10.1021/es00045a018 CrossRefGoogle Scholar
  17. De Wever H, Cole JR, Fettig MR, Hogan DA, Tiedje JM (2000) Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp nov. Appl Environ Microbiol 66(6):2297–2301. doi: 10.1128/aem.66.6.2297-2301.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  18. de Jong E, Field JA (1997) Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by basidiomycetes. Annu Rev Microbiol 51:375–414. doi: 10.1146/annurev.micro.51.1.375 PubMedCrossRefGoogle Scholar
  19. de Jong E, Field JA, Spinnler HE, Wijnberg J, Debont JAM (1994) Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl Environ Microbiol 60(1):264–270PubMedPubMedCentralGoogle Scholar
  20. Fahimi IJ, Keppler F, Schöler HF (2003) Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 52(2):513–520. doi: 10.1016/s0045-6535(03)00212-1 PubMedCrossRefGoogle Scholar
  21. Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Bio/Technol 3(3):185–254. doi: 10.1007/s11157-004-4733-8 CrossRefGoogle Scholar
  22. Field JA, Wijnberg JBPA (2003) An update on organohalogen metabolites produced by basidiomycetes. In: Gribble G (ed) Natural production of organohalogen compounds, vol 3. Springer, Berlin, pp 103–119CrossRefGoogle Scholar
  23. Field JA, Verhagen FJM, de Jong E (1995) Natural organohalogen production by basidiomycetes. Trends Biotechnol 13(11):451–456. doi: 10.1016/s0167-7799(00)89001-0 CrossRefGoogle Scholar
  24. Flodin C, Johansson E, Boren H, Grimvall A, Dahlman O, Morck R (1997) Chlorinated structures in high molecular weight organic matter isolated from fresh and decaying plant material and soil. Environ Sci Technol 31(9):2464–2468. doi: 10.1021/es960374l CrossRefGoogle Scholar
  25. Frank H (1988) Trichloressigsaure im Boden: eine Ursache neuartiger Waldschaden. Nachr Chem Tech Lab 36:889Google Scholar
  26. Frankland J, Hedger JN, Swift MJ (2009) Decomposer basidiomycetes: their biology and ecology. Cambridge University Press, CambridgeGoogle Scholar
  27. Garvie LAJ, Wilkens B, Groy TL, Glaeser JA (2015) Substantial production of drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by the lignicolous basidiomycete Phellinus badius in the heartwood of mesquite (Prosopis juliflora) trees. Naturwissenschaften 102(3–4):18PubMedCrossRefGoogle Scholar
  28. Green NJL, Jones JL, Johnston AE, Jones KC (2001) Further evidence for the existence of PCDD/Fs in the environment prior as 1900. Environ Sci Technol 35(10):1974–1981. doi: 10.1021/es0002161 PubMedCrossRefGoogle Scholar
  29. Green NJL, Hassanin A, Johnston AE, Jones KC (2004) Observations on historical, contemporary, and natural PCDD/Fs. Environ Sci Technol 38(3):715–723. doi: 10.1021/es034599p PubMedCrossRefGoogle Scholar
  30. Gribble GW (1992) Naturally occurring organohalogen compounds–a survey. J Nat Prod 55(10):1353–1395. doi: 10.1021/np50088a001 CrossRefGoogle Scholar
  31. Gribble GW (1996) Naturally occurring organohalogen compounds–a comprehensive survey. Prog Chem Org Nat Prod 68:1–423Google Scholar
  32. Gribble GW (2003a) The diversity of naturally produced organohalogens. In: Gribble G (ed) Natural production of organohalogen compounds, vol 3. Springer, Berlin, pp 1–15CrossRefGoogle Scholar
  33. Gribble GW (2003b) The diversity of naturally produced organohalogens. Chemosphere 52(2):289–297. doi: 10.1016/s0045-6535(03)00207-8 PubMedCrossRefGoogle Scholar
  34. Gribble GW (2004a) Amazing organohalogens. Am Sci 92:342–349CrossRefGoogle Scholar
  35. Gribble GW (2004b) Natural organohalogens. Science Dossier 6. Euro Chlor, BrusselsGoogle Scholar
  36. Gribble GW (2010) Naturally occurring organohalogen compounds—a comprehensive update. Progress in the chemistry of organic natural products, vol 91, pp 1–613. doi: 10.1007/978-3-211-99323-1_1
  37. Gribble GW (2012) Recently discovered naturally occurring heterocyclic organohalogen compounds. Heterocycles 84(1):157–207. doi: 10.3987/rev-11-sr(p)5 CrossRefGoogle Scholar
  38. Gron C, Laturnus F, Jacobsen OS (2012) Reliable test methods for the determination of a natural production of chloroform in soils. Environ Monit Assess 184(3):1231–1241. doi: 10.1007/s10661-011-2035-5 PubMedCrossRefGoogle Scholar
  39. Gu C, Liu C, Ding YJ, Li H, Teppen BJ, Johnston CT, Boyd SA (2011) Clay mediated route to natural formation of polychlorodibenzo-p-dioxins. Environ Sci Technol 45(8):3445–3451. doi: 10.1021/es104225d PubMedCrossRefGoogle Scholar
  40. Gustavsson M, Karlsson S, Oberg G, Sanden P, Svensson T, Valinia S, Thiry Y, Bastviken D (2012) Organic matter chlorination rates in different boreal soils: the role of soil organic matter content. Environ Sci Technol 46(3):1504–1510. doi: 10.1021/es203191r PubMedCrossRefGoogle Scholar
  41. Haiber G, Jacob G, Niedan V, Nkusi G, Schöler HF (1996) The occurrence of trichloroacetic acid (TCAA)—indications of a natural production? Chemosphere 33(5):839–849. doi: 10.1016/0045-6535(96)00239-1 CrossRefGoogle Scholar
  42. Hamilton JTG, McRoberts WC, Keppler F, Kalin RM, Harper DB (2003) Chloride methylation by plant pectin: An efficient environmentally significant process. Science 301(5630):206–209. doi: 10.1126/science.1085036 PubMedCrossRefGoogle Scholar
  43. Haraguchi K, Kotaki Y, Relox JR, Romero MLJ, Terada R (2010) Monitoring of naturally produced brominated phenoxyphenols and phenoxyanisoles in aquatic plants from the philippines. J Agric Food Chem 58(23):12385–12391. doi: 10.1021/jf103001n PubMedCrossRefGoogle Scholar
  44. Harper DB (1985) Halomethane from halide ion—a highly efficient fungal conversion of environmental significance. Nature 315(6014):55–57. doi: 10.1038/315055a0 CrossRefGoogle Scholar
  45. Harper DB (2000) The global chloromethane cycle: biosynthesis, biodegradation and metabolic role. Nat Prod Rep 17(4):337–348. doi: 10.1039/a809400d PubMedCrossRefGoogle Scholar
  46. Harper DB, Hamilton JTG (1988) Biosynthesis of chloromethane in Phellinus pomaceus. J Gen Microbiol 134:2831–2839Google Scholar
  47. Harper DB, Hamilton JTG (2003) The global cycles of the naturally-occurring monohalomethanes. In: Gribble G (ed) Natural production of organohalogen compounds, vol 3. Springer, Berlin, pp 17–41CrossRefGoogle Scholar
  48. Haselmann KF, Ketola RA, Laturnus F, Lauritsen FR, Gron C (2000a) Occurrence and formation of chloroform at Danish forest sites. Atmos Environ 34(2):187–193. doi: 10.1016/s1352-2310(99)00279-4 CrossRefGoogle Scholar
  49. Haselmann KF, Laturnus F, Svensmark B, Gron C (2000b) Formation of chloroform in spruce forest soil—results from laboratory incubation studies. Chemosphere 41(11):1769–1774. doi: 10.1016/s0045-6535(00)00044-8 PubMedCrossRefGoogle Scholar
  50. Haselmann KF, Laturnus F, Gron C (2002) Formation of chloroform in soil. A year-round study at a Danish spruce forest site. Water Air Soil Pollut 139(1–4):35–41. doi: 10.1023/a:1015896719508
  51. Hiebl J, Lehnert K, Vetter W (2011) Identification of a fungi-derived terrestrial halogenated natural product in wild boar (Sus scrofa). J Agric Food Chem 59(11):6188–6192. doi: 10.1021/jf201128r PubMedCrossRefGoogle Scholar
  52. Hjelm O, Johansson MB, Oberg-Asplund G (1995) Organically bound halogens in coniferous forest soil—distribution pattern and evidence of in-situ production. Chemosphere 30(12):2353–2364. doi: 10.1016/0045-6535(95)00107-j CrossRefGoogle Scholar
  53. Hjelm O, Boren H, Oberg G (1996) Analysis of halogenated organic compounds in coniferous forest soil from a Lepista nuda (wood blewitt) fairy ring. Chemosphere 32(9):1719–1728. doi: 10.1016/0045-6535(96)00089-6 CrossRefGoogle Scholar
  54. Hjelm O, Johansson E, Oberg G (1999) Production of organically bound halogens by the litter-degrading fungus Lepista nuda. Soil Biol Biochem 31(11):1509–1515. doi: 10.1016/s0038-0717(99)00069-3 CrossRefGoogle Scholar
  55. Hoekstra EJ, De Leer EWB, Brinkman UAT (1998a) Natural formation of chloroform and brominated trihalomethanes in soil. Environ Sci Technol 32(23):3724–3729. doi: 10.1021/es980127c CrossRefGoogle Scholar
  56. Hoekstra EJ, Verhagen FJM, Field JA, De Leer EWB, Brinkman UAT (1998b) Natural production of chloroform by fungi. Phytochemistry 49(1):91–97. doi: 10.1016/s0031-9422(97)00984-9 CrossRefGoogle Scholar
  57. Hoekstra EJ, de Leer EWB, Brinkman UAT (1999a) Findings supporting the natural formation of trichloroacetic acid in soil. Chemosphere 38(12):2875–2883. doi: 10.1016/s0045-6535(98)00487-1 CrossRefGoogle Scholar
  58. Hoekstra EJ, De Weerd H, De Leer EWB, Brinkman UAT (1999b) Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ Sci Technol 33(15):2543–2549. doi: 10.1021/es9900104 CrossRefGoogle Scholar
  59. Holmstrand H, Gadomski D, Mandalakis M, Tysklind M, Irvine R, Andersson P, Gustafsson O (2006) Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating. Environ Sci Technol 40(12):3730–3735. doi: 10.1021/es0602142 PubMedCrossRefGoogle Scholar
  60. Horii Y, van Bavel B, Kannan K, Petrick G, Nachtigall K, Yamashita N (2008) Novel evidence for natural formation of dioxins in ball clay. Chemosphere 70(7):1280–1289. doi: 10.1016/j.chemosphere.2007.07.066 PubMedCrossRefGoogle Scholar
  61. Huber SG, Kotte K, Schöler HF, Williams J (2009) Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples. Environ Sci Technol 43(13):4934–4939. doi: 10.1021/es8032605 PubMedCrossRefGoogle Scholar
  62. Keppler F, Eiden R, Niedan V, Pracht J, Schöler HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403(6767):298–301. doi: 10.1038/35002055 PubMedCrossRefGoogle Scholar
  63. Keppler F, Borchers R, Pracht J, Rheinberger S, Schöler HF (2002) Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36(11):2479–2483. doi: 10.1021/es015611j PubMedCrossRefGoogle Scholar
  64. Keppler F, Harper DB, Rockmann T, Moore RM, Hamilton JTG (2005) New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys 5:2403–2411CrossRefGoogle Scholar
  65. Keppler F, Borchers R, Hamilton JTG, Kilian G, Pracht J, Schöler HF (2006) De novo formation of chloroethyne in soil. Environ Sci Technol 40(1):130–134. doi: 10.1021/es0513279 PubMedCrossRefGoogle Scholar
  66. Khalil MAK, Rasmussen RA, French JRJ, Holt JA (1990) The influence of termites on atmospheric trace gases—CH4, CO2, CHCl3, N2O, CO, H2, and light-hydrocarbons. J Geophys Res Atmos 95(D4):3619–3634. doi: 10.1029/JD095iD04p03619 CrossRefGoogle Scholar
  67. Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SCB, Novak PJ (2012) Natural niche for organohalide-respiring chloroflexi. Appl Environ Microbiol 78(2):393–401. doi: 10.1128/aem.06510-11 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Krzmarzick MJ, Miller HR, Yan T, Novak PJ (2014) Novel firmicutes group implicated in the dechlorination of two chlorinated xanthones, analogues of natural organochlorines. Appl Environ Microbiol 80(3):1210–1218. doi: 10.1128/aem.03472-13 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lassen P, Randall A, Jorgensen O, Warwick P, Carlsen L (1994) Enzymatically mediated incorporation of 2-chlorophenol and 4-chlorophenol into humic acids. Chemosphere 28(4):703–710. doi: 10.1016/0045-6535(94)90221-6 CrossRefGoogle Scholar
  70. Laturnus F (2001) Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environ Sci Pollut Res 8(2):103–108. doi: 10.1007/bf02987302 CrossRefGoogle Scholar
  71. Laturnus F, Mehrtens G, Gron C (1995) Haloperoxidase-like activity in spruce forest soil a source of volatile halogenated organic-compounds. Chemosphere 31(7):3709–3719. doi: 10.1016/0045-6535(95)00220-3 CrossRefGoogle Scholar
  72. Laturnus F, Haselmann KF, Borch T, Gron C (2002) Terrestrial natural sources of trichloromethane (chloroform, CHCl(3))—an overview. Biogeochemistry 60(2):121–139. doi: 10.1023/a:1019887505651 CrossRefGoogle Scholar
  73. Lauritsen FR, Lunding A (1998) A study of the bioconversion potential of the fungus Bjerkandera adusta with respect to a production of chlorinated aromatic compounds. Enzyme Microbial Technol 22(6):459–465. doi: 10.1016/s0141-0229(97)00237-8 CrossRefGoogle Scholar
  74. Leri AC, Myneni SCB (2010) Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Global Biogeochem Cycles 24. doi: 10.1029/2010gb003882
  75. Leri AC, Marcus MA, Myneni SCB (2007) X-ray spectromicroscopic investigation of natural organochlorine distribution in weathering plant material. Geochim Cosmochim Acta 71(23):5834–5846. doi: 10.1016/j.gca.2007.09.001 CrossRefGoogle Scholar
  76. Marshall RA, Hamilton JTG, Dring MJ, Harper DB (2000) The red alga Asparagopsis taxiformis/Falkenbergia hillebrandii—a possible source of trichloroethylene and perchloroethylene? Limnol Oceanogr 45(2):516–519Google Scholar
  77. Mester T, Swarts HJ, Sole SRI, DeBont JAM, Field JA (1997) Stimulation of aryl metabolite production in the basidiomycete Bjerkandera sp. strain BOS55 with biosynthetic precursors and lignin degradation products. Appl Environ Microbiol 63(5):1987–1994PubMedPubMedCentralGoogle Scholar
  78. Milliken CE, Meier GP, Sowers KR, May HD (2004a) Chlorophenol production by anaerobic microorganisms: transformation of a biogenic chlorinated hydroquinone metabolite. Appl Environ Microbiol 70(4):2494–2496. doi: 10.1128/aem.70.4.2494-2496.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Milliken CE, Meier GP, Watts JEM, Sowers KR, May HD (2004b) Microbial anaerobic demethylation and dechlorination of chlorinated hydroquinone metabolites synthesized by basidiomycete fungi. Appl Environ Microbiol 70(1):385–392. doi: 10.1128/aem.70.1.385-392.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Munoz M, Gomez-Rico MF, Font R (2014) PCDD/F formation from chlorophenols by lignin and manganese peroxidases. Chemosphere 110:129–135. doi: 10.1016/j.chemosphere.2014.02.029 PubMedCrossRefGoogle Scholar
  81. Murphy CD (2003) New frontiers in biological halogenation. J Appl Microbiol 94(4):539–548. doi: 10.1046/j.1365-2672.2003.01900.x PubMedCrossRefGoogle Scholar
  82. Myneni SCB (2002) Formation of stable chlorinated hydrocarbons in weathering plant material. Science 295(5557):1039–1041. doi: 10.1126/science.1067153 PubMedCrossRefGoogle Scholar
  83. Niedan V, Schöler HF (1997) Natural formation of chlorobenzoic acids (CBA) and distinction between PCB-degraded CBA. Chemosphere 35(6):1233–1241. doi: 10.1016/s0045-6535(97)00205-1 CrossRefGoogle Scholar
  84. Niedan V, Pavasars I, Oberg G (2000) Chloroperoxidase-mediated chlorination of aromatic groups in fulvic acid. Chemosphere 41(5):779–785. doi: 10.1016/s0045-6535(99)00471-3 PubMedCrossRefGoogle Scholar
  85. Nightingale PD, Malin G, Liss PS (1995) Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnol Oceanogr 40(4):680–689CrossRefGoogle Scholar
  86. Öberg GM (2003) The Biogeochemistry of Chlorine in Soil. In: Gribble G (ed) Natural production of organohalogen compounds, vol 3. Springer, Berlin, pp 43–62CrossRefGoogle Scholar
  87. Öberg G, Bastviken D (2012) Transformation of chloride to organic chlorine in terrestrial environments: variability, extent, and implications. Crit Rev Environ Sci Technol 42(23):2526–2545. doi: 10.1080/10643389.2011.592753 CrossRefGoogle Scholar
  88. Öberg LG, Rappe C (1992) Biochemical formation of PCDD/Fs from chlorophenols. Chemosphere 25(1–2):49–52. doi: 10.1016/0045-6535(92)90477-9 CrossRefGoogle Scholar
  89. Öberg G, Brunberg H, Hjelm O (1997) Production of organically-bound chlorine during degradation of birch wood by common white-rot fungi. Soil Biol Biochem 29(2):191–197. doi: 10.1016/s0038-0717(96)00242-8 CrossRefGoogle Scholar
  90. Ortiz-Bermudez P, Hirth KC, Srebotnik E, Hammel KE (2007) Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production. Proc Natl Acad Sci USA 104(10):3895–3900. doi: 10.1073/pnas.0610074104 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Paul C, Pohnert G (2011) Production and role of volatile halogenated compounds from marine algae. Nat Prod Rep 28(2):186–195. doi: 10.1039/c0np00043d PubMedCrossRefGoogle Scholar
  92. Pizzigallo MDR, Ruggiero P, Crecchio C, Mininni R (1995) Manganese and iron-oxides as reactants for oxidation of chlorophenols. Soil Sci Soc Am J 59(2):444–452CrossRefGoogle Scholar
  93. Poch GK, Gloer JB, Shearer CA (1992) New bioactive metabolites from a fresh-water isolate of the fungus Kirschsteiniothelia sp. J Nat Prod 55(8):1093–1099. doi: 10.1021/np50086a010 PubMedCrossRefGoogle Scholar
  94. Putschew A, Keppler F, Jekel M (2003) Differentiation of the halogen content of peat samples using ion chromatography after combustion (TX/TOX-IC). Anal Bioanal Chem 375(6):781–785. doi: 10.1007/s00216-003-1797-1 PubMedGoogle Scholar
  95. Redon PO, Jolivet C, Saby NPA, Abdelouas A, Thiry Y (2013) Occurrence of natural organic chlorine in soils for different land uses. Biogeochemistry 114(1–3):413–419. doi: 10.1007/s10533-012-9771-7 CrossRefGoogle Scholar
  96. Reina RG, Leri AC, Myneni SCB (2004) ClK-edge X-ray spectroscopic investigation of enzymatic formation of organochlorines in weathering plant material. Environ Sci Technol 38(3):783–789. doi: 10.1021/es0347336 PubMedCrossRefGoogle Scholar
  97. Rezanka T, Spizek J (2005) Griseofulvin and other biologically active, halogen containing compounds from fungi. In: UrRahman A (ed) Bioactive Natural Products, vol 32. Studies in Natural Products Chemistry. pp 471–547Google Scholar
  98. Rohlenova J, Gryndler M, Forczek ST, Fuksova K, Handova V, Matucha M (2009) Microbial chlorination of organic matter in forest soil: investigation using Cl-36-chloride and its methodology. Environ Sci Technol 43(10):3652–3655. doi: 10.1021/es803300f PubMedCrossRefGoogle Scholar
  99. Ruttimann-Johnson C, Lamar RT (1996) Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl Environ Microbiol 62(10):3890–3893PubMedPubMedCentralGoogle Scholar
  100. Scarratt MG, Moore RM (1999) Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum. Limnol Oceanogr 44(3):703–707CrossRefGoogle Scholar
  101. Silk PJ, Macaulay JB (2003) Stereoselective biosynthesis of chloroarylpropane diols by the basidiomycete Bjerkandera adusta: exploring the roles of amino acids, pyruvate, glycerol and phenyl acetyl carbinol. FEMS Microbiol Lett 228(1):11–19. doi: 10.1016/s0378-1097(03)00725-0 PubMedCrossRefGoogle Scholar
  102. Silk PJ, Lonergan GC, Arsenault TL, Boyle CD (1997) Evidence of natural organochlorine formation in peat bogs. Chemosphere 35(12):2865–2880. doi: 10.1016/s0045-6535(97)00347-0 CrossRefGoogle Scholar
  103. Silk PJ, Aubry C, Lonergan GC, Macaulay JB (2001) Chlorometabolite production by the ecologically important white rot fungus Bjerkandera adusta. Chemosphere 44(7):1603–1616. doi: 10.1016/s0045-6535(00)00537-3 PubMedCrossRefGoogle Scholar
  104. Simmonds PG, Derwent RG, Manning AJ, O’Doherty S, Spain G (2010) Natural chloroform emissions from the blanket peat bogs in the vicinity of Mace Head, Ireland over a 14-year period. Atmos Environ 44(10):1284–1291. doi: 10.1016/j.atmosenv.2009.12.027 CrossRefGoogle Scholar
  105. Spinnler HE, de Jong E, Mauvais G, Semon E, Lequere JL (1994) Production of halogenated compounds by Bjerkandera adusta. Appl Microbiol Biotechnol 42(2–3):212–221Google Scholar
  106. Swarts HJ, Verhagen FJM, Field JA, Wijnberg J (1996) Novel chlorometabolites produced by Bjerkandera species. Phytochemistry 42(6):1699–1701. doi: 10.1016/0031-9422(96)00191-4 CrossRefGoogle Scholar
  107. Swarts HJ, Teunissen PJM, Verhagen FJM, Field JA, Wijnberg J (1997) Chlorinated anisyl metabolites produced by basidiomycetes. Mycol Res 101:372–374. doi: 10.1017/s0953756296003036 CrossRefGoogle Scholar
  108. Swarts HJ, Verhagen FJM, Field JA, Wijnberg J (1998) Trichlorinated phenols from Hypholoma elongatum. Phytochemistry 49(1):203–206. doi: 10.1016/s0031-9422(97)01067-4 CrossRefGoogle Scholar
  109. Takahashi A, Agatsuma T, Matsuda M, Ohta T, Nunozawa T, Endo T, Nozoe S (1992) Russuphelin-A, a new cytotoxic substance from the mushroom Russula-subnigricans hongo. Chem Pharm Bull 40(12):3185–3188PubMedCrossRefGoogle Scholar
  110. Teunissen PJM, Swarts HJ, Field JA (1997) The de novo production of drosophilin A (tetrachloro-4-methoxyphenol) and drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by ligninolytic basidiomycetes. Appl Microbiol Biotechnol 47(6):695–700PubMedCrossRefGoogle Scholar
  111. Teuten EL, Xu L, Reddy CM (2005) Two abundant bioaccumulated halogenated compounds are natural products. Science 307(5711):917–920. doi: 10.1026/science.1106882 PubMedCrossRefGoogle Scholar
  112. Tittlemier SA, Simon M, Jarman WM, Elliott JE, Norstrom RJ (1999) Identification of a novel C10H6N2Br 4Cl2 heterocyclic compound in seabird eggs. A bioaccumulating marine natural product? Environ Sci Technol 33(1):26–33. doi: 10.1021/es980646f CrossRefGoogle Scholar
  113. Verhagen FJM, Swarts HJ, Kuyper TW, Wijnberg J, Field JA (1996) The ubiquity of natural adsorbable organic halogen production among basidiomycetes. Appl Microbiol Biotechnol 45(5):710–718CrossRefGoogle Scholar
  114. Verhagen FJM, Swarts HJ, Wijnberg J, Field JA (1998a) Biotransformation of the major fungal metabolite 3,5-dichlorop-p-anisyl alcohol under anaerobic conditions and its role in formation of bis(3,5-dichloro-4-hydroxyphenyl)methane. Appl Environ Microbiol 64(9):3225–3231PubMedPubMedCentralGoogle Scholar
  115. Verhagen FJM, Van Assema FBJ, Boekema B, Swarts HJ, Wijnberg J, Field JA (1998b) Dynamics of organohalogen production by the ecologically important fungus Hypholoma fasciculare. FEMS Microbiol Lett 158(2):167–178. doi: 10.1111/j.1574-6968.1998.tb12816.x CrossRefGoogle Scholar
  116. Vetter W (2006) Marine halogenated natural products of environmental relevance. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Reviews of environmental contamination and toxicology. vol 188, pp 1–57. doi: 10.1007/978-0-387-32964-2_1
  117. Vetter W, Scholz E, Gaus C, Muller JF, Haynes D (2001) Anthropogenic and natural organohalogen compounds in blubber of dolphins and dugongs (Dugong dugon) from northeastern Australia. Arch Environ Contam Toxicol 41(2):221–231PubMedCrossRefGoogle Scholar
  118. Vetter W, Haase-Aschoff P, Rosenfelder N, Komarova T, Mueller JF (2009) Determination of halogenated natural products in passive samplers deployed along the great barrier reef, Queensland/Australia. Environ Sci Technol 43(16):6131–6137. doi: 10.1021/es900928m PubMedCrossRefGoogle Scholar
  119. Weissflog L, Lange CA, Pfennigsdorff A, Kotte K, Elansky N, Lisitzyna L, Putz E, Krueger G (2005) Sediments of salt lakes as a new source of volatile highly chlorinated C1/C2 hydrocarbons. Geophys Res Lett 32(1). doi: 10.1029/2004gl020807
  120. Wever R, van der Horst MA (2013) The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment. Dalton Trans 42(33):11778–11786. doi: 10.1039/c3dt50525a PubMedCrossRefGoogle Scholar
  121. Wittsiepe J, Kullmann Y, Schrey P, Selenka F, Wilhelm M (1999) Peroxidase-catalyzed in vitro formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols. Toxicol Lett 106(2–3):191–200. doi: 10.1016/s0378-4274(99)00066-1 PubMedCrossRefGoogle Scholar
  122. Wright AD, Papendorf O, Konig GM (2005) Ambigol C and 2,4-dichlorobenzoic acid, natural products produced by the terrestrial cyanobacterium Fischerella ambigua. J Nat Prod 68(3):459–461. doi: 10.1021/np049640w PubMedCrossRefGoogle Scholar
  123. Wu J, Vetter W, Gribble GW, Schneekloth JS, Blank DH, Gorls H (2002) Angewandte Chemie-Int Ed 41(10):1740–1743. doi: 10.1002/1521-3773(20020517)41:10<1740::aid-anie1740>;2-7
  124. Yokouchi Y, Ikeda M, Inuzuka Y, Yukawa T (2002) Strong emission of methyl chloride from tropical plants. Nature 416(6877):163–165. doi: 10.1038/416163a PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of ArizonaTucsonUSA

Personalised recommendations