Advertisement

Corrinoid Metabolism in Dehalogenating Pure Cultures and Microbial Communities

  • Theodore C. Moore
  • Jorge C. Escalante-SemerenaEmail author
Chapter

Abstract

Corrinoid cofactors are critical components of the electron transport chain for many organohalide-respiring bacteria (OHRB). This chapter examines the synthesis and metabolism of corrinoids, with a focus on studies in bacteria that express reductive dehalogenases (RDases). We discuss the physical characteristics of corrinoids that make them distinct from one another, and provide examples of the various corrinoids isolated from OHRB. We provide a brief review of the synthesis, salvaging, and transport of corrinoids as it is currently understood in nondehalogenating model organisms. Wherever applicable, we draw parallels to the pathways present in OHRB. We present some recent examples of work studying the metabolism of corrinoids in mixed cultures of OHRB, and discuss how these bacteria may share and modify corrinoids at a community-based level.

Keywords

Reductive Dechlorination Anaerobic Pathway Geobacter Sulfurreducens Methanosarcina Barkeri Lower Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by USPHS grant R37 GM040313 from the National Institutes of General Medical Sciences to J.C.E.-S.

References

  1. Aaron M, Charbon G, Lam H, Schwarz H, Vollmer W, Jacobs-Wagner C (2007) The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol Microbiol 64:938–952PubMedCrossRefGoogle Scholar
  2. Abend A, Bandarian V, Nitsche R, Stupperich E, Retey J, Reed GH (1999) Ethanolamine ammonia-lyase has a “base-on” binding mode for coenzyme B12. Arch Biochem Biophys 370:138–141PubMedCrossRefGoogle Scholar
  3. Adrian L, Hansen SK, Fung JM, Gorisch H, Zinder SH (2007) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41:2318–2323PubMedCrossRefGoogle Scholar
  4. Allen RH, Stabler SP (2008) Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am J Clin Nutr 87:1324–1335PubMedPubMedCentralGoogle Scholar
  5. Altschul SF, Gish W, Miller W, Myers EW (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  6. Anderson PJ, Lango J, Carkeet C, Britten A, Kräutler B, Hammock BD, Roth JR (2008) One pathway can incorporate either adenine or dimethylbenzimidazole as an alpha-axial ligand of B12 cofactors in Salmonella enterica. J Bacteriol 190:1160–1171PubMedCrossRefGoogle Scholar
  7. Assaf-Anid N, Hayes KF, Vogel TM (1994) Reductive dechlorination of carbon tetrachloride by cobalamin (II) in the presence of dithiotreitol: Mechanistic study, effect of redox potential and pH. Environ Sc Technol 28:246–252CrossRefGoogle Scholar
  8. Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247. doi: 10.1146/annurev.biochem.72.121801.161828 PubMedCrossRefGoogle Scholar
  9. Battersby AR (2000) Tetrapyrroles: the pigments of life. Natural product reports 17:507–526PubMedCrossRefGoogle Scholar
  10. Battersby AR, McDonald E, Cornforth JW, Frydman B (1976) Biosynthesis of porphyrins and corrins [and discussion]. Phil Transac Royal Soc London Series B, Biol Sci 273(924):161–180. doi: 10.2307/2417458 CrossRefGoogle Scholar
  11. Blanche F, Couder M, Debussche L, Thibaut D, Cameron B, Crouzet J (1991a) Biosynthesis of vitamin B12: stepwise amidation of carboxyl groups b, d, e, and g of cobyrinic acid a, c-diamide is catalyzed by one enzyme in Pseudomonas denitrificans. J Bacteriol 173:6046–6051PubMedPubMedCentralGoogle Scholar
  12. Blanche F, Debussche L, Famechon A, Thibaut D, Cameron B, Crouzet J (1991b) A bifunctional protein from Pseudomonas denitrificans carries cobinamide kinase and cobinamide phosphate guanylyltransferase activities. J Bacteriol 173:6052–6057PubMedPubMedCentralGoogle Scholar
  13. Blanche F, Thibaut D, Debussche L, Hertle R, Zipfel F, Muller G (1993) Paralleles and decisive differences in vitamin B12 biosynthesis. Angew Chem Int Ed Engl 32:1651–1653CrossRefGoogle Scholar
  14. Bogorad L, Granick S (1953) The enzymatic synthesis of porphyrins from porphobilinogen. Proc Natl Acad Sci USA 39:1176PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346:455–458. doi: 10.1126/science.1258118 PubMedCrossRefGoogle Scholar
  16. Borths EL, Locher KP, Lee AT, Rees DC (2002) The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 99:16642–16647. doi: 10.1073/pnas.262659699 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Braun V, Hantke K (2007) Acquisition of iron by bacteria. Microbiology Monographs. In: Molecular microbiology of heavy metals, vol 6. Springer, BerlinGoogle Scholar
  18. Brown KL (2005) Chemistry and enzymology of vitamin B12. Chem Rev 105:2075–2149. doi: 10.1021/cr030720z PubMedCrossRefGoogle Scholar
  19. Buan NR, Escalante-Semerena JC (2006) Purification and initial biochemical characterization of ATP:cob(I)alamin adenosyltransferase (EutT) enzyme of Salmonella enterica. J Biol Chem 281:16971–16977PubMedCrossRefGoogle Scholar
  20. Buan NR, Suh SJ, Escalante-Semerena JC (2004) The eutT gene of Salmonella enterica encodes an oxygen-labile, metal-containing ATP: corrinoid adenosyltransferase enzyme. J Bacteriol 186:5708–5714. doi: 10.1128/JB.186.17.5708-5714.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cadieux N, Bradbeer C, Reeger-Schneider E, Koster W, Mohanty AK, Wiener MC, Kadner RJ (2002) Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli. J Bacteriol 184:706–717PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cameron B, Briggs K, Pridmore S, Brefort G, Crouzet J (1989) Cloning and analysis of genes involved in coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 171:547–557PubMedPubMedCentralGoogle Scholar
  23. Chan CH, Escalante-Semerena JC (2011) ArsAB, a novel enzyme from Sporomusa ovata activates phenolic bases for adenosylcobamide biosynthesis. Mol Microbiol 81:952–967. doi: 10.1111/j.1365-2958.2011.07741.x PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chan CH, Newmister SA, Talyor K, Claas KR, Rayment I, Escalante-Semerena JC (2014) Dissecting cobamide diversity through structural and functional analyses of the base-activating CobT enzyme of Salmonella enterica. Biochim Biophys Acta 1840:464–475. doi: 10.1016/j.bbagen.2013.09.038 PubMedCrossRefGoogle Scholar
  25. Chimento DP, Mohanty AK, Kadner RJ, Wiener MC (2003) Crystallization and initial X-ray diffraction of BtuB, the integral membrane cobalamin transporter of Escherichia coli. Acta Crystallogr D Biol Crystallogr 59:509–511PubMedCrossRefGoogle Scholar
  26. Chiu P-C, Reinhard M (1996) Transformation of carbon tetrachloride by reduced vitamin B12 in aqueous cysteine solution. Environ Sci Technol 30:1882–1889. doi: 10.1021/es950477o CrossRefGoogle Scholar
  27. Choudhary PK, Duret A, Rohrbach-Brandt E, Holliger C, Sigel RK, Maillard J (2013) Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense. J Bacteriol 195:5186–5195. doi: 10.1128/JB.00730-13 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crofts TS, Men Y, Alvarez-Cohen L, Taga ME (2014) A bioassay for the detection of benzimidazoles reveals their presence in a range of environmental samples. Front Microbiol 5:592PubMedPubMedCentralCrossRefGoogle Scholar
  29. Crouzet J, Levy-Schil S, Cameron B, Cauchois L, Rigault S, Rouyez MC, Blanche F, Debussche L, Thibaut D (1991) Nucleotide sequence and genetic analysis of a 13.1-kilobase-pair Pseudomonas denitrificans DNA fragment containing five cob genes and identification of structural genes encoding Cob(I)alamin adenosyltransferase, cobyric acid synthase, and bifunctional cobinamide kinase-cobinamide phosphate guanylyltransferase. J Bacteriol 173:6074–6087PubMedPubMedCentralGoogle Scholar
  30. Debussche L, Couder M, Thibaut D, Cameron B, Crouzet J, Blanche F (1991) Purification and partial characterization of cob(I)alamin adenosyltransferase from Pseudomonas denitrificans. J Bacteriol 173:6300–6302PubMedPubMedCentralGoogle Scholar
  31. Debussche L, Thibaut D, Cameron B, Crouzet J, Blanche F (1993) Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J Bacteriol 175:7430–7440PubMedPubMedCentralGoogle Scholar
  32. Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL (2014) Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15:47–57. doi: 10.1016/j.chom.2013.12.007 PubMedPubMedCentralCrossRefGoogle Scholar
  33. DeVeaux LC, Clevenson DS, Bradbeer C, Kadner RJ (1986) Identification of the BtuCED polypeptides and evidence for their role in vitamin B12 transport in Escherichia coli. J Bacteriol 167:920–927Google Scholar
  34. Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry 17:4583–4593PubMedCrossRefGoogle Scholar
  35. Eisenreich W, Bacher A (1991) Biosynthesis of 5-hydroxybenzimidazolylcobamid (factor III) in Methanobacterium thermoautotrophicum. J Biol Chem 266:23840–23849PubMedGoogle Scholar
  36. Endres B (1997) Untersuchungen zur biosynthese des Basenteils von Vitamin B12 bei Eubacterium limosum und von 5-methylbenzimidazolylcobamid bei Desulfobulbus propionicus Google Scholar
  37. Escalante-Semerena JC (2007) Conversion of cobinamide into adenosylcobamide in bacteria and archaea. J Bacteriol 189:4555–4560PubMedPubMedCentralCrossRefGoogle Scholar
  38. Escalante-Semerena JC, Suh SJ, Roth JR (1990) cobA function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids in Salmonella typhimurium. J Bacteriol 172:273–280PubMedPubMedCentralGoogle Scholar
  39. Eschenmoser A (1988) Vitamin B12: experiments concerning the origin of its molecular structure. Angew Chem Int Ed Engl 27:5–40CrossRefGoogle Scholar
  40. Eschenmoser A, Wintner CE (1977) Natural product synthesis and vitamin B12. Science 196(4297):1410–1420PubMedCrossRefGoogle Scholar
  41. Fonseca MV, Escalante-Semerena JC (2000) Reduction of cob(III)alamin to cob(II)alamin in Salmonella enterica Serovar Typhimurium LT2. J Bacteriol 182:4304–4309. doi: 10.1128/JB.182.15.4304-4309.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fonseca MV, Buan NR, Horswill AR, Rayment I, Escalante-Semerena JC (2002) The ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica requires the 2’-OH Group of ATP for function and yields inorganic triphosphate as its reaction byproduct. J Biol Chem 277:33127–33131. doi: 10.1074/jbc.M203893200 PubMedCrossRefGoogle Scholar
  43. Fresquet V, Williams L, Raushel FM (2004) Mechanism of cobyrinic acid a, c-diamide synthetase from Salmonella typhimurium LT2. Biochemistry 43:10619–10627PubMedCrossRefGoogle Scholar
  44. Gantzer CJ, Wackett LP (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25:715–722. doi: 10.1021/es00016a017 CrossRefGoogle Scholar
  45. Girard CL, Santschi DE, Stabler SP, Allen RH (2009) Apparent ruminal synthesis and intestinal disappearance of vitamin B12 and its analogs in dairy cows. J Dairy Sci 92:4524–4529. doi: 10.3168/jds.2009-2049 PubMedCrossRefGoogle Scholar
  46. Goris T, Schubert T, Gadkari J, Wubet T, Tarkka M, Buscot F, Adrian L, Diekert G (2014) Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ Microbiol 16:3562–3580. doi: 10.1111/1462-2920.12589 PubMedCrossRefGoogle Scholar
  47. Gray MJ, Escalante-Semerena JC (2007) Single-enzyme conversion of FMNH2 to 5,6-dimethylbenzimidazole, the lower ligand of B12. Proc Natl Acad Sci USA 104:2921–2926. doi: 10.1073/pnas.0609270104 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gray MJ, Escalante-Semerena JC (2009a) The cobinamide amidohydrolase (cobyric acid-forming) CbiZ enzyme: a critical activity of the cobamide remodelling system of Rhodobacter sphaeroides. Mol Microbiol 74:1198–1210. doi: 10.1111/j.1365-2958.2009.06928.x MMI6928 [pii]
  49. Gray MJ, Escalante-Semerena JC (2009b) In vivo analysis of cobinamide salvaging in Rhodobacter sphaeroides strain 2.4.1. J Bacteriol 191:3842–3851. doi: 10.1128/JB.00230-09 JB.00230-09 [pii]
  50. Gray MJ, Escalante-Semerena JC (2010) A new pathway for the synthesis of alpha-ribazole-phosphate in Listeria innocua. Mol Microbiol 77:1429–1438. doi: 10.1111/j.1365-2958.2010.07294.x MMI7294 [pii]
  51. Gray MJ, Tavares NK, Escalante-Semerena JC (2008) The genome of Rhodobacter sphaeroides strain 2.4.1 encodes functional cobinamide salvaging systems of archaeal and bacterial origins. Mol Microbiol 70:824–836. doi: 10.1111/j.1365-2958.2008.06437.x MMI6437 [pii]
  52. Guerrero-Barajas C, Field J (2006) Enhanced anaerobic biotransformation of carbon tetrachloride with precursors of vitamin B12 biosynthesis. Biodegradation 17:317–329. doi: 10.1007/s10532-005-9001-2 PubMedCrossRefGoogle Scholar
  53. Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398CrossRefGoogle Scholar
  54. Hollriegl V, Lamm L, Rowold J, Horig J, Renz P (1982) Biosynthesis of vitamin B12. Different pathways in some aerobic and anaerobic microorganisms. Arch Microbiol 132:155–158PubMedCrossRefGoogle Scholar
  55. Horig JA, Renz P (1980) Biosynthesis of vitamin B12. Some properties of the 5,6-dimethylbenzimidazole-forming system of Propionibacterium freudenreichii and Propionibacterium shermanii. Eur J Biochem 105:587–592PubMedCrossRefGoogle Scholar
  56. Hug LA, Maphosa F, Leys D, Loffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368:20120322. doi: 10.1098/rstb.2012.0322 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jeter RM, Olivera BM, Roth JR (1984) Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol 159:206–213PubMedPubMedCentralGoogle Scholar
  58. John M, Schmitz RP, Westermann M, Richter W, Diekert G (2006) Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Arch Microbiol 186:99–106PubMedCrossRefGoogle Scholar
  59. Johnson CL, Pechonick E, Park SD, Havemann GD, Leal NA, Bobik TA (2001) Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol 183:1577–1584PubMedPubMedCentralCrossRefGoogle Scholar
  60. Johnson CL, Buszko ML, Bobik TA (2004) Purification and initial characterization of the Salmonella enterica PduO ATP:Cob(I)alamin adenosyltransferase. J Bacteriol 186:7881–7887PubMedPubMedCentralCrossRefGoogle Scholar
  61. Keller S, Ruetz M, Kunze C, Krautler B, Diekert G, Schubert T (2013) Exogenous 5,6-dimethylbenzimidazole caused production of a non-functional tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Environ Microbiol 16:3361–3369. doi: 10.1111/1462-2920.12268 PubMedCrossRefGoogle Scholar
  62. Kolonko B, Hörig JA, Renz P (1992) Transformation of tritiated (5′) riboflavin into 5,6-dimethylbenzimidazole. Zeits fuer Naturf Sect C Biosc 47:171–176Google Scholar
  63. Köster W (2001) ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 152:291–301. doi: 10.1016/S0923-2508(01)01200-1 PubMedCrossRefGoogle Scholar
  64. Koutmos M, Gherasim C, Smith JL, Banerjee R (2011) The structural basis of multifunctionality in a vitamin B12-processing enzyme. J Biol Chem 286:29780–29787. doi: 10.1074/jbc.M111.261370 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kräutler B, Kohler HP, Stupperich E (1988) 5′-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria. Eur J Biochem 176:461–469PubMedCrossRefGoogle Scholar
  66. Kräutler B, Fieber W, Osterman S, Fasching M, Ongania K-H, Gruber K, Kratky C, Mikl C, Siebert A, Diekert G (2003) The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is Norpseudo-B12, a new type of natural corrinoid. Helv Chim Acta 86:3698–3716CrossRefGoogle Scholar
  67. Krone UE, Thauer RK, Hogenkamp HPC (1989) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914. doi: 10.1021/bi00437a057 CrossRefGoogle Scholar
  68. Krone UE, Thauer RK, Hogenkamp HPC, Steinbach K (1991) Reductive formation of carbon monoxide from carbon tetrachloride and FREONS 11, 12, and 13 catalyzed by corrinoids. Biochemistry 30:2713–2719. doi: 10.1021/bi00224a020 PubMedCrossRefGoogle Scholar
  69. Kruse T, Maillard J, Goodwin L, Woyke T, Teshima H, Bruce D, Detter C, Tapia R, Han C, Huntemann M, Wei CL, Han J, Chen A, Kyrpides N, Szeto E, Markowitz V, Ivanova N, Pagani I, Pati A, Pitluck S, Nolan M, Holliger C, Smidt H (2013) Complete genome sequence of Dehalobacter restrictus PER-K23(T.). Stand Genom Sci 8:375–388CrossRefGoogle Scholar
  70. Lamm L, Heckmann G, Renz P (1982) Biosynthesis of vitamin B12 in anaerobic bacteria. Mode of incorporation of glycine into the 5,6-dimethylbenzimidazole moiety in Eubacterium limosum. Eur J Biochem 122:569–571PubMedCrossRefGoogle Scholar
  71. Lawrence JG, Roth JR (1995) The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli. J Bacteriol 177:6371–6380PubMedPubMedCentralGoogle Scholar
  72. Lawrence AD, Taylor SL, Scott A, Rowe ML, Johnson CM, Rigby SE, Geeves MA, Pickersgill RW, Howard MJ, Warren MJ (2014) FAD binding, cobinamide binding and active site communication in the corrin reductase CobR. Biosci Rep 34:e00120. doi: 10.1042/BSR20140060 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Leeper FJ (1989) The biosynthesis of porphyrins, chlorophylls and vitamin B12. Natural product reports 6:171–203PubMedCrossRefGoogle Scholar
  74. Lesage S, Brown S, Millar K (1998) A different mechanism for the reductive dechlorination of chlorinated ethenes: kinetic and spectroscopic evidence. Environ Sci Technol 32:2264–2272. doi: 10.1021/es970959v CrossRefGoogle Scholar
  75. Lewinson O, Lee AT, Locher KP, Rees DC (2010) A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat Struct Mol Biol 17:332–338. doi: 10.1038/nsmb.1770 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lexa D, Saveant J-M (1983) The electrochemistry of vitamin B12. Acc Chem Res 16:235–243CrossRefGoogle Scholar
  77. Lundrigan MD, Kadner RJ (1989) Altered cobalamin metabolism in Escherichia coli btuR mutants affects btuB gene regulation. J Bacteriol 171:154–161PubMedPubMedCentralGoogle Scholar
  78. Maggio-Hall LA, Escalante-Semerena JC (1999) In vitro synthesis of the nucleotide loop of cobalamin by Salmonella typhimurium enzymes. Proc Natl Acad Sci USA 96:11798–11803PubMedPubMedCentralCrossRefGoogle Scholar
  79. Maggio-Hall LA, Escalante-Semerena JC (2003) Alpha-5,6-dimethylbenzimidazole adenine dinucleotide (alpha-DAD), a putative new intermediate of coenzyme B12 biosynthesis in Salmonella typhimurium. Microbiology 149:983–990PubMedCrossRefGoogle Scholar
  80. Maggio-Hall LA, Claas KR, Escalante-Semerena JC (2004) The last step in coenzyme B(12) synthesis is localized to the cell membrane in bacteria and archaea. Microbiology 150:1385–1395PubMedCrossRefGoogle Scholar
  81. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638. doi: 10.1128/aem.69.8.4628-4638.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Maillard J, Genevaux P, Holliger C (2011) Redundancy and specificity of multiple trigger factor chaperones in Desulfitobacteria. Microbiology 157:2410–2421. doi: 10.1099/mic.0.050880-0 PubMedCrossRefGoogle Scholar
  83. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40(Database issue):D115–D122. doi: 10.1093/nar/gkr1044
  84. Matthews RG (2001) Cobalamin-dependent methyltransferases. Acc Chem Res 34:681–689PubMedCrossRefGoogle Scholar
  85. Matthews RG (2009) Cobalamin- and corrinoid-dependent enzymes. Metal Ions Life Sci 6:53–114CrossRefGoogle Scholar
  86. McMurdie PJ, Behrens SF, Muller JA, Goke J, Ritalahti KM, Wagner R, Goltsman E, Lapidus A, Holmes S, Loffler FE, Spormann AM (2009) Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet 5:e1000714. doi: 10.1371/journal.pgen.1000714 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Men Y, Seth EC, Yi S, Allen RH, Taga ME, Alvarez-Cohen L (2014a) Sustainable growth of Dehalococcoides mccartyi 195 by corrinoid salvaging and remodeling in defined lactate-fermenting consortia. Appl Environ Microbiol. doi: 10.1128/aem.03477-13 (in press)
  88. Men Y, Seth EC, Yi S, Crofts TS, Allen RH, Taga ME, Alvarez-Cohen L (2014b) Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities. Environ Microbiol. doi: 10.1111/1462-2920.12500 PubMedGoogle Scholar
  89. Mera PE, Escalante-Semerena JC (2010a) Dihydroflavin-driven adenosylation of 4-coordinate Co(II) corrinoids: are cobalamin reductases enzymes or electron transfer proteins? J Biol Chem 285:2911–2917. doi: 10.1074/jbc.M109.059485 M109.059485 [pii]
  90. Mera PE, Escalante-Semerena JC (2010b) Multiple roles of ATP:cob(I)alamin adenosyltransferases in the conversion of B(12) to coenzyme B (12). Appl Microbiol Biotechnol 88:41–48. doi: 10.1007/s00253-010-2773-2 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mera PE, Maurice MS, Rayment I, Escalante-Semerena JC (2007) Structural and functional analyses of the human-type corrinoid adenosyltransferase (PduO) from Lactobacillus reuteri. Biochemistry 46:13829–13836. doi: 10.1021/bi701622j PubMedCrossRefGoogle Scholar
  92. Miller E, Wohlfarth G, Diekert G (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch Microbiol 169:497–502. doi: 10.1007/s002030050602 PubMedCrossRefGoogle Scholar
  93. Mok KC, Taga ME (2013) Growth inhibition of Sporomusa ovata by incorporation of benzimidazole bases into cobamides. J Bacteriol 195:1902–1911. doi: 10.1128/JB.01282-12 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Moore SJ, Warren MJ (2012) The anaerobic biosynthesis of vitamin B12. Biochem Soc Trans 40:581–586. doi: 10.1042/BST20120066 PubMedCrossRefGoogle Scholar
  95. Moore TC, Newmister SA, Rayment I, Escalante-Semerena JC (2012) Structural insights into the mechanism of four-coordinate cob(II)alamin formation in the active site of the Salmonella enterica ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme: critical role of residues Phe91 and Trp93. Biochemistry 51:9647–9657. doi: 10.1021/bi301378d PubMedPubMedCentralCrossRefGoogle Scholar
  96. Moore SJ, Biedendieck R, Lawrence AD, Deery E, Howard MJ, Rigby SE, Warren MJ (2013a) Characterization of the enzyme CbiH60 involved in anaerobic ring contraction of the cobalamin (vitamin B12) biosynthetic pathway. J Biol Chem 288:297–305. doi: 10.1074/jbc.M112.422535 PubMedCrossRefGoogle Scholar
  97. Moore SJ, Lawrence AD, Biedendieck R, Deery E, Frank S, Howard MJ, Rigby SE, Warren MJ (2013b) Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc Natl Acad Sci USA 110:14906–14911. doi: 10.1073/pnas.1308098110 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Moore TC, Mera PE, Escalante-Semerena JC (2014) The Eutt enzyme of Salmonella enterica is a unique ATP:Cob(I)alamin adenosyltransferase metalloprotein that requires ferrous ions for maximal activity. J Bacteriol 196(4):903–910. doi: 10.1128/JB.01304-13 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Morita Y, Futagami T, Goto M, Furukawa K (2009) Functional characterization of the trigger factor protein PceT of tetrachloroethene-dechlorinating Desulfitobacterium hafniense Y51. Appl Microbiol Biotechnol 83:775–781PubMedCrossRefGoogle Scholar
  100. Nahvi A, Barrick JE, Breaker RR (2004) Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucl Acids Res 32:143–150. doi: 10.1093/nar/gkh167 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Neumann A, Wohlfarth G, Diekert G (1995) Properties of tetrachloroethene and trichloroethene dehalogenase of Dehalospirillum multivorans. Arch Microbiol 163:276–281CrossRefGoogle Scholar
  102. Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180:4140–4145PubMedPubMedCentralGoogle Scholar
  103. Newmister SA, Chan CH, Escalante-Semerena JC, Rayment I (2012) Structural insights into the function of the nicotinate mononucleotide: phenol/p-cresol phosphoribosyltransferase (ArsAB) enzyme from Sporomusa ovata. Biochemistry 51:8571–8582. doi: 10.1021/bi301142h PubMedPubMedCentralCrossRefGoogle Scholar
  104. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60. doi: 10.1146/Annurev.Micro.112408.134247 PubMedPubMedCentralCrossRefGoogle Scholar
  105. O’Toole GA, Rondon MR, Escalante-Semerena JC (1993) Analysis of mutants of defective in the synthesis of the nucleotide loop of cobalamin. J Bacteriol 175:3317–3326PubMedPubMedCentralGoogle Scholar
  106. O’Toole GA, Escalante-Semerena JC (1993) cobU-dependent assimilation of nonadenosylated cobinamide in cobA mutants of Salmonella typhimurium. J Bacteriol 175:6328–6336PubMedPubMedCentralGoogle Scholar
  107. O’Toole GA, Escalante-Semerena JC (1995) Purification and characterization of the bifunctional CobU enzyme of Salmonella typhimurium LT2. Evidence for a CobU-GMP intermediate. J Biol Chem 270:23560–23569PubMedCrossRefGoogle Scholar
  108. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33 (17):5691–5702. doi: 10.1093/nar/gki866 33/17/5691 [pii]
  109. Palmer T, Sargent F, Berks BC (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180. doi: 10.1016/j.tim.2005.02.002 PubMedCrossRefGoogle Scholar
  110. Payne KAP, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SEJ, Leys D (2014) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature advance online publication. doi: 10.1038/nature13901. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature13901.html#/supplementary-information
  111. Price-Carter M, Tingey J, Bobik TA, Roth JR (2001) The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar Typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183:2463–2475PubMedPubMedCentralCrossRefGoogle Scholar
  112. Randaccio L, Geremia S, Demitri N, Wuerges J (2010) Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules 15:3228–3259. doi: 10.3390/molecules15053228 15053228 [pii]
  113. Raux E, Thermes C, Heathcote P, Rambach A, Warren MJ (1997) A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J Bacteriol 179:3202–3212PubMedPubMedCentralGoogle Scholar
  114. Raux E, Lanois A, Warren MJ, Rambach A, Thermes C (1998) Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem J 335:159–166PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ravnum S, Andersson DI (1997) Vitamin B12 repression of the btuB gene in Salmonella typhimurium is mediated via a translational control which requires leader and coding sequences. Mol Microbiol 23:35–42PubMedCrossRefGoogle Scholar
  116. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227. doi: 10.1038/nrm2646 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Reinhold A, Westermann M, Seifert J, von Bergen M, Schubert T, Diekert G (2012) Impact of vitamin B12 on formation of the tetrachloroethene reductive dehalogenase in Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 78:8025–8032. doi: 10.1128/aem.02173-12 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Renz P (1999) Biosynthesis of the 5,6-dimethylbenzimidazole moiety of cobalamin and of other bases found in natural corrinoids. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp 557–575Google Scholar
  119. Richter-Dahlfors AA, Andersson DI (1992) Cobalamin (vitamin B12) repression of the Cob operon in Salmonella typhimurium requires sequences within the leader and the first translated open reading frame. Mol Microbiol 6:743–749PubMedCrossRefGoogle Scholar
  120. Richter-Dahlfors AA, Ravnum S, Andersson DI (1994) Vitamin B12 repression of the cob operon in Salmonella typhimurium: translational control of the cbiA gene. Mol Microbiol 13:541–553PubMedCrossRefGoogle Scholar
  121. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159. doi: 10.1074/jbc.M305837200 M305837200 [pii]
  122. Roessner CA, Scott AI (2006) Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). J Bacteriol 188:7331–7334PubMedPubMedCentralCrossRefGoogle Scholar
  123. Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM (1993) Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175:3303–3316PubMedPubMedCentralGoogle Scholar
  124. Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181PubMedCrossRefGoogle Scholar
  125. Scherer P, Höllriegl V, Krug C, Bokel M, Renz P (1984) On the biosynthesis of 5-hydroxybenzimidazolylcobamide (vitamin B12-factor III) in Methanosarcina barkeri. Arch Microbiol 138:354–359CrossRefGoogle Scholar
  126. Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L (2013) Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos Trans R Soc Lond B Biol Sci 368:20120321. doi: 10.1098/rstb.2012.0321 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Schumacher W, Holliger C, Zehnder AJ, Hagen WR (1997) Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett 409:421–425PubMedCrossRefGoogle Scholar
  128. Seth EC, Taga ME (2014) Nutrient cross-feeding in the microbial world. Front Microbiol 5:350. doi: 10.3389/fmicb.2014.00350 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Stupperich E, Eisinger HJ (1989a) Biosynthesis of para-cresolyl cobamide in Sporomusa ovata. Arch Microbiol 151:372–377CrossRefGoogle Scholar
  130. Stupperich E, Eisinger HJ (1989b) Function and the biosynthesis of unusual corrinoids by a novel activation mechanism of aromatic compounds in anaerobic bacteria. Adv Space Res 9:117–125CrossRefGoogle Scholar
  131. Stupperich E, Eisinger HJ, Kräutler B (1989) Identification of phenolyl cobamide from the homoacetogenic bacterium Sporomusa ovata. Eur J Biochem 186:657–661PubMedCrossRefGoogle Scholar
  132. Suh SJ, Escalante-Semerena JC (1993) Cloning, sequencing and overexpression of cobA which encodes ATP: corrinoid adenosyltransferase in Salmonella typhimurium. Gene 129:93–97PubMedCrossRefGoogle Scholar
  133. Suh S, Escalante-Semerena JC (1995) Purification and initial characterization of the ATP: corrinoid adenosyltransferase encoded by the cobA gene of Salmonella typhimurium. J Bacteriol 177:921–925PubMedPubMedCentralGoogle Scholar
  134. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernández N, Sanford RA, Mesbah NM, Löffler FE (2006) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782. doi: 10.1128/aem.72.4.2775-2782.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Taga ME, Larsen NA, Howard-Jones AR, Walsh CT, Walker GC (2007) BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature 446:449–453PubMedPubMedCentralCrossRefGoogle Scholar
  136. Thibaut D, Debussche L, Blanche F (1990) Biosynthesis of vitamin B12: isolation of precorrin-6x, a metal-free precursor of the corrin macrocycle retaining five S-adenosylmethionine-derived peripheral methyl groups. Proc Natl Acad Sci USA 87:8795–8799PubMedPubMedCentralCrossRefGoogle Scholar
  137. Thibaut D, Couder M, Famechon A, Debussche L, Cameron B, Crouzet J, Blanche F (1992) The final step in the biosynthesis of hydrogenobyrinic acid is catalyzed by the cobH gene product with precorrin-8x as the substrate. J Bacteriol 174:1043–1049PubMedPubMedCentralGoogle Scholar
  138. Thomas MG, Escalante-Semerena JC (2000) Identification of an alternative nucleoside triphosphate: 5′-deoxyadenosylcobinamide phosphate nucleotidyltransferase in Methanobacterium thermoautotrophicum ∆H. J Bacteriol 182:4227–4233PubMedPubMedCentralCrossRefGoogle Scholar
  139. Thomas MG, Thompson TB, Rayment I, Escalante-Semerena JC (2000) Analysis of the adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase (CobU) enzyme of Salmonella typhimurium LT2. Identification of residue His-46 as the site of guanylylation. J Biol Chem 275(36):27576–27586. doi: 10.1074/jbc.M000977200 PubMedGoogle Scholar
  140. Thompson TB, Thomas MG, Escalante-Semerena JC, Rayment I (1999) Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) complexed with GMP: evidence for a substrate-induced transferase active site. Biochemistry 38(40):12995–13005PubMedCrossRefGoogle Scholar
  141. Trzebiatowski JR, Escalante-Semerena JC (1997) Purification and characterization of CobT, the nicotinate-mononucleotide: 5,6-dimethylbenzimidazole phosphoribosyltransferase enzyme from Salmonella typhimurium LT2. J Biol Chem 272:17662–17667PubMedCrossRefGoogle Scholar
  142. Trzebiatowski JR, O’Toole GA, Escalante-Semerena JC (1994) The cobT gene of Salmonella typhimurium encodes the NaMN: 5,6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N 1-(5-phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin. J Bacteriol 176:3568–3575PubMedPubMedCentralGoogle Scholar
  143. van Beelen P, Stassen AP, Bosch JW, Vogels GD, Guijt W, Haasnoot CA (1984) Elucidation of the structure of methanopterin, a coenzyme from Methanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. Eur J Biochem 138:563–571PubMedCrossRefGoogle Scholar
  144. Wagner DD, Hug LA, Hatt JK, Spitzmiller MR, Padilla-Crespo E, Ritalahti KM, Edwards EA, Konstantinidis KT, Löffler FE (2012) Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genom 13:200CrossRefGoogle Scholar
  145. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002) The biosynthesis of adenosylcobalamin (vitamin B12). Natural Prod Rep 19:390–412CrossRefGoogle Scholar
  146. Woodson JD, Escalante-Semerena JC (2004) CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B12 precursor cobinamide in archaea. Proc Natl Acad Sci USA 101:3591–3596PubMedPubMedCentralCrossRefGoogle Scholar
  147. Woodson JD, Zayas CL, Escalante-Semerena JC (2003) A new pathway for salvaging the coenzyme B12 precursor cobinamide in archaea requires cobinamide-phosphate synthase (CbiB) enzyme activity. J Bacteriol 185:7193–7201. doi: 10.1128/JB PubMedPubMedCentralCrossRefGoogle Scholar
  148. Woodward RB (1973) The total synthesis of vitamin B12. Pure Appl Chem 33:145–177PubMedCrossRefGoogle Scholar
  149. Yamanishi M, Yunoki M, Tobimatsu T, Sato H, Matsui J, Dokiya A, Iuchi Y, Oe K, Suto K, Shibata N, Morimoto Y, Yasuoka N, Toraya T (2002) The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol. Eur J Biochem 269:4484–4494PubMedCrossRefGoogle Scholar
  150. Yan J, Ritalahti KM, Wagner DD, Loffler FE (2012) Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl Environ Microbiol 78:6630–6636. doi: 10.1128/AEM.01535-12 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Yan J, Im J, Yang Y, Loffler FE (2013) Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philos Trans R Soc Lond B Biol Sci 368:20120320. doi: 10.1098/rstb.2012.0320 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L, Taga ME (2012) Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Appl Environ Microbiol 78:7745–7752. doi: 10.1128/AEM.02150-12 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zayas CL, Claas K, Escalante-Semerena JC (2007) The CbiB protein of Salmonella enterica is an integral membrane protein involved in the last step of the de novo corrin ring biosynthetic pathway. J Bacteriol 189:7697–7708. doi: 10.1128/JB.01090-07 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics 10:78. doi: 10.1186/1471-2164-10-78 1471-2164-10-78 [pii]

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Theodore C. Moore
    • 1
  • Jorge C. Escalante-Semerena
    • 1
    Email author
  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations