Advertisement

Comparative Biochemistry of Organohalide Respiration

  • Torsten SchubertEmail author
  • Gabriele DiekertEmail author
Chapter

Abstract

Corrinoid-containing reductive dehalogenases (RDases) play a key role in the energy metabolism of anaerobic organohalide-respiring bacteria (OHRB). In such microorganisms the reductive dehalogenation of organohalides catalyzed by RDases is coupled to ATP synthesis via electron transport phosphorylation. The overview presented here summarizes the actual knowledge about the biochemical properties and catalytic mechanism(s) of these enzymes found in bacteria of various phylogenetic affiliation. Furthermore, based on recent findings the multistep biosynthesis of the membrane-associated RDases and the achievements in functional heterologous production of these corrinoid-containing iron–sulfur proteins are described. Up to date, little is known about the composition of the organohalide respiratory chain in OHRB and the interaction of the RDases with other electron-transferring components in the cytoplasmic membrane. In this summary, actual models of different organohalide respiratory chains are included.

Keywords

Electron Paramagnetic Resonance Reductive Dechlorination Sulfur Cluster Reductive Dehalogenation Midpoint Redox Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the DFG Research Unit FOR1530 and the DFG grants DI314/12-2 and SCHU2605/1-1.

References

  1. Adrian L, Rahnenführer J, Gobom J, Hölscher T (2007) Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 73:7717–7724PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andres S, Wiezer A, Bendfeldt H, Waschkowitz T, Toeche-Mittler C, Daniel R (2004) Insights into the genome of the enteric bacterium Escherichia blattae: cobalamin (B12) biosynthesis, B12-dependent reactions, and inactivation of the gene region encoding B12-dependent glycerol dehydratase by a new Mu-like prophage. J Mol Microbiol Biotechnol 8:150–168PubMedCrossRefGoogle Scholar
  3. Bird CL, Kuhn AT (1981) Electrochemistry of the viologens. Chem Soc Rev 10:49–82CrossRefGoogle Scholar
  4. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462PubMedCrossRefGoogle Scholar
  5. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346:455–458PubMedCrossRefGoogle Scholar
  6. Bouwer EJ, McCarty PL (1983) Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45:1286–1294PubMedPubMedCentralGoogle Scholar
  7. Burgess NR, McDermott SN, Whiting J (1973) Aerobic bacteria occurring in the hind-gut of the cockroach, Blatta orientalis. J Hyg (Lond) 71:1–7CrossRefGoogle Scholar
  8. Castanié-Cornet MP, Bruel N, Genevaux P (2014) Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta 1843:1442–1456PubMedCrossRefGoogle Scholar
  9. Chen K, Huang L, Xu C, Liu X, He J, Zinder SH, Li S, Jiang J (2013) Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol Microbiol 89:1121–1139PubMedCrossRefGoogle Scholar
  10. Cheng D, Chow WL, He J (2010) A Dehalococcoides-containing co-culture that dechlorinates tetrachloroethene to trans-1,2-dichloroethene. ISME J 4:88–97PubMedCrossRefGoogle Scholar
  11. Christiansen N, Ahring BK, Wohlfarth G, Diekert G (1998) Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfitobacterium hafniense. FEBS Lett 436:159–162PubMedCrossRefGoogle Scholar
  12. Crofts TS, Seth EC, Hazra AB, Taga ME (2013) Cobamide structure depends on both lower ligand availability and CobT substrate specificity. Chem Biol 20:1265–1274PubMedCrossRefGoogle Scholar
  13. De Wildeman S, Diekert G, Van Langenhove H, Verstraete W (2003) Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl Environ Microbiol 69:5643–5647PubMedPubMedCentralCrossRefGoogle Scholar
  14. DeWeerd KA, Suflita JM (1990) Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of “Desulfomonile tiedjei”. Appl Environ Microbiol 56:2999–3005PubMedPubMedCentralGoogle Scholar
  15. DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30CrossRefGoogle Scholar
  16. Ding C, Zhao S, He J (2014) A Desulfitobacterium sp. strain PR reductively dechlorinates both 1, 1, 1-trichloroethane and chloroform. Environ Microbiol 16:3387–3397PubMedCrossRefGoogle Scholar
  17. Dolfing J, Novak I (2014) The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments. Biodegradation 26:15–27PubMedPubMedCentralCrossRefGoogle Scholar
  18. Duhamel M, Edwards EA (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 58:538–549PubMedCrossRefGoogle Scholar
  19. Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36:4193–4202PubMedCrossRefGoogle Scholar
  20. Euro C (2014) Chlorine Industry Review 2013–2014. http://www.eurochlor.org/
  21. Firth RA, Hill HAO, Pratt JM, Thorp RG, Williams, RJP (1969) The chemistry of vitamin B12. Part XI. Some further formation constants. J Chem Soc A 381–386Google Scholar
  22. Fontecave M, Ollagnier-de-Choudens S (2008) Iron–sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Arch Biochem Biophys 474:226–237PubMedCrossRefGoogle Scholar
  23. Futagami T, Goto M, Furukawa K (2008) Biochemical and genetic bases of dehalorespiration. Chem Rec 8:1–12PubMedCrossRefGoogle Scholar
  24. Gantzer CJ, Wackett LP (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25:715–722CrossRefGoogle Scholar
  25. Glod G, Angst W, Holliger C, Schwarzenbach RP (1996) Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: reaction kinetics and reaction mechanisms. Environ Sci Technol 31:253–260CrossRefGoogle Scholar
  26. Goris T, Schubert T, Gadkari J, Wubet T, Tarkka M, Buscot F, Adrian L, Diekert G (2014) Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ Microbiol 16:3562–3580PubMedCrossRefGoogle Scholar
  27. Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297PubMedCrossRefGoogle Scholar
  28. Griffin BM, Tiedje JM, Löffler FE (2004) Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environ Sci Technol 38:4300–4303PubMedCrossRefGoogle Scholar
  29. Hill DW, McCarty PL (1967) Anaerobic degradation of selected chlorinated hydrocarbon pesticides. J Water Pollut Control Fed 39:1259–1277PubMedGoogle Scholar
  30. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998a) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321PubMedCrossRefGoogle Scholar
  31. Holliger C, Wohlfarth G, Diekert G (1998b) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398CrossRefGoogle Scholar
  32. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368:20120322PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, Locher KP (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317:1387–1390PubMedCrossRefGoogle Scholar
  34. Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57PubMedCrossRefGoogle Scholar
  35. Jayachandran G, Görisch H, Adrian L (2004) Studies on hydrogenase activity and chlorobenzene respiration in Dehalococcoides sp. strain CBDB1. Arch Microbiol 182:498–504PubMedCrossRefGoogle Scholar
  36. John M, Schmitz RP, Westermann M, Richter W, Diekert G (2006) Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Arch Microbiol 186:99–106PubMedCrossRefGoogle Scholar
  37. Keller S, Ruetz M, Kunze C, Kräutler B, Diekert G, Schubert T (2014) Exogenous 5,6-dimethylbenzimidazole caused production of a non-functional tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Environ Microbiol 16:3361–3369PubMedCrossRefGoogle Scholar
  38. Kennedy FS, Buckman T, Wood JM (1969) Carbenoid intermediates from the photolysis of haloalkylcobalamins. Biochim Biophys Acta 177:661–663PubMedCrossRefGoogle Scholar
  39. Kern M, Simon J (2008) Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration. Mol Microbiol 69:1137–1152PubMedCrossRefGoogle Scholar
  40. Kim SH, Harzman C, Davis JK, Hutcheson R, Broderick JB, Marsh TL, Tiedje JM (2012) Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiol 8(12):21CrossRefGoogle Scholar
  41. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355PubMedCrossRefGoogle Scholar
  42. Kimoto H, Suye S, Makishima H, Arai J, Yamaguchi S, Fujii Y, Yoshioka T, Taketo A (2010) Cloning of a novel dehalogenase from environmental DNA. Biosci Biotechnol Biochem 74:1290–1292PubMedCrossRefGoogle Scholar
  43. Kliegman S, McNeill K (2008) Dechlorination of chloroethylenes by cob (I) alamin and cobalamin model complexes. Dalton Trans 32:4191–4201PubMedCrossRefGoogle Scholar
  44. Korkhov VM, Mireku SA, Veprintsev DB, Locher KP (2014) Structure of AMP-PNP-bound BtuCD and mechanism of ATP-powered vitamin B12 transport by BtuCD-F. Nat Struct Mol Biol. doi: 10.1038/nsmb.2918 PubMedGoogle Scholar
  45. Krasotkina J, Walters T, Maruya KA, Ragsdale SW (2001) Characterization of the B12- and iron–sulfur-containing reductive dehalogenase from Desulfitobacterium chlororespirans. J Biol Chem 276:40991–40997PubMedCrossRefGoogle Scholar
  46. Krauter H (2006) Untersuchungen zur Beteiligung membranständiger redoxaktiver Komponenten bei der Dehalorespiration in Sulfurospirillum multivorans. Diploma thesis. Friedrich Schiller University JenaGoogle Scholar
  47. Kräutler B, Fieber W, Ostermann S, Fasching M, Ongania KH, Gruber K, Kratky C, Mikl C, Siebert A, Diekert G (2003) The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is Norpseudo-B12, a new type of a natural corrinoid. Helv Chim Acta 86:3698–3716CrossRefGoogle Scholar
  48. Krone UE, Thauer RK, Hogenkamp HPC (1989a) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914CrossRefGoogle Scholar
  49. Krone UE, Laufer K, Thauer RK, Hogenkamp HP (1989b) Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28:10061–10065PubMedCrossRefGoogle Scholar
  50. Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14:883–894PubMedCrossRefGoogle Scholar
  51. Lexa D, Saveant JM (1983) The electrochemistry of vitamin B12. Acc Chem Res 16:235–243CrossRefGoogle Scholar
  52. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635PubMedCrossRefGoogle Scholar
  53. Louie TM, Mohn WW (1999) Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J Bacteriol 181:40–46PubMedPubMedCentralGoogle Scholar
  54. Mac Nelly A, Kai M, Svatoš A, Diekert G, Schubert T (2014) Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. Appl Environ Microbiol 80:4313–4322PubMedPubMedCentralCrossRefGoogle Scholar
  55. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275PubMedPubMedCentralGoogle Scholar
  56. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron–sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638PubMedPubMedCentralCrossRefGoogle Scholar
  57. Maillard J, Regeard C, Holliger C (2005) Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 7:107–117PubMedCrossRefGoogle Scholar
  58. Maillard J, Genevaux P, Holliger C (2011) Redundancy and specificity of multiple trigger factor chaperones in Desulfitobacteria. Microbiology 157:2410–2421PubMedCrossRefGoogle Scholar
  59. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116PubMedCrossRefGoogle Scholar
  60. Marco-Urrea E, Nijenhuis I, Adrian L (2011) Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45:1555–1562PubMedCrossRefGoogle Scholar
  61. Mayer F, Müller V (2014) Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 38:449–472PubMedCrossRefGoogle Scholar
  62. Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571PubMedCrossRefGoogle Scholar
  63. Miller E, Wohlfarth G, Diekert G (1996) Studies on tetrachloroethene respiration in Dehalospirillum multivorans. Arch Microbiol 166:379–387PubMedCrossRefGoogle Scholar
  64. Miller E, Wohlfarth G, Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168:513–519PubMedCrossRefGoogle Scholar
  65. Miller E, Wohlfarth G, Diekert G (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch Microbiol 169:497–502PubMedCrossRefGoogle Scholar
  66. Mohn WW, Tiedje JM (1990) Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch Microbiol 153:267–271PubMedCrossRefGoogle Scholar
  67. Mohn WW, Tiedje JM (1991) Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei. Arch Microbiol 157:1–6CrossRefGoogle Scholar
  68. Moore SJ, Lawrence AD, Biedendieck R, Deery E, Frank S, Howard MJ, Rigby SE, Warren MJ (2013) Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc Natl Acad Sci U S A 110:14906–14911PubMedPubMedCentralCrossRefGoogle Scholar
  69. Morita Y, Futagami T, Goto M, Furukawa K (2009) Functional characterization of the trigger factor protein PceT of tetrachloroethene-dechlorinating Desulfitobacterium hafniense Y51. Appl Microbiol Biotechnol 83:775–781PubMedCrossRefGoogle Scholar
  70. Morris RM, Fung JM, Rahm BG, Zhang S, Freedman DL, Zinder SH, Richardson RE (2007) Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. Appl Environ Microbiol 73:320–326PubMedCrossRefGoogle Scholar
  71. Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nachin L, Loiseau L, Expert D, Barras F (2003) SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe–S] biogenesis under oxidative stress. EMBO J 22:427–437PubMedPubMedCentralCrossRefGoogle Scholar
  73. Neumann A, Scholz-Muramatsu H, Diekert G (1994) Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol 162:295–301PubMedCrossRefGoogle Scholar
  74. Neumann A, Wohlfarth G, Diekert G (1995) Properties of tetrachloroethene and trichloroethene dehalogenase of Dehalospirillum multivorans. Arch Microbiol 163:276–281CrossRefGoogle Scholar
  75. Neumann A, Wohlfarth G, Diekert G (1996) Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J Biol Chem 271:16515–16519PubMedCrossRefGoogle Scholar
  76. Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180:4140–4145PubMedPubMedCentralGoogle Scholar
  77. Neumann A, Siebert A, Trescher T, Reinhardt S, Wohlfarth G, Diekert G (2002) Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. Arch Microbiol 177:420–426PubMedCrossRefGoogle Scholar
  78. Ni S, Fredrickson JK, Xun L (1995) Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1. J Bacteriol 177:5135–5139PubMedPubMedCentralGoogle Scholar
  79. Nijenhuis I, Zinder SH (2005) Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 71:1664–1667PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nonnenberg C, van der Donk WA, Zipse H (2002) Reductive dechlorination of trichloroethylene: a computational study. J Phys Chem A 106:8708–8715CrossRefGoogle Scholar
  82. Outten FW, Djaman O, Storz G (2004) A suf operon requirement for Fe–S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52:861–872PubMedCrossRefGoogle Scholar
  83. Padovani D, Labunska T, Palfey BA, Ballou DP, Banerjee R (2008) Adenosyltransferase tailors and delivers coenzyme B12. Nat Chem Biol 4:194–196PubMedCrossRefGoogle Scholar
  84. Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10:483–496PubMedGoogle Scholar
  85. Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann AM (2015) Biochemical and EPR-spectroscopic Investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J Am Chem Soc 137:3525–32Google Scholar
  86. Payne KAP, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SEJ, Leys D (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517:513–516PubMedCrossRefGoogle Scholar
  87. Reinhold A, Westermann M, Seifert J, von Bergen M, Schubert T, Diekert G (2012) Impact of vitamin B12 on formation of the tetrachloroethene reductive dehalogenase in Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 78:8025–8032PubMedPubMedCentralCrossRefGoogle Scholar
  88. Renpenning J, Keller S, Cretnik S, Shouakar-Stash O, Elsner M, Schubert T, Nijenhuis I (2014) Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene. Environ Sci Technol 48:11837–11845PubMedCrossRefGoogle Scholar
  89. Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2013) The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos Trans R Soc Lond B Biol Sci 368:20120325PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sargent F (2007) Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153:633–651PubMedCrossRefGoogle Scholar
  91. Saunders NF, Houben EN, Koefoed S, de Weert S, Reijnders WN, Westerhoff HV, De Boer AP, Van Spanning RJ (1999) Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NirI, a novel type of membrane protein. Mol Microbiol 34:24–36PubMedCrossRefGoogle Scholar
  92. Schink B, Friedrich M (1994) Energetics of syntrophic fatty acid oxidation. FEMS Microbiol Rev 15:85–94CrossRefGoogle Scholar
  93. Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L (2013) Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos Trans R Soc Lond B Biol Sci 368:20120321PubMedPubMedCentralCrossRefGoogle Scholar
  94. Schmitz RP, Wolf J, Habel A, Neumann A, Ploss K, Svatos A, Boland W, Diekert G (2007) Evidence for a radical mechanism of the dechlorination of chlorinated propenes mediated by the tetrachloroethene reductive dehalogenase of Sulfurospirillum multivorans. Environ Sci Technol 41:7370–7375PubMedCrossRefGoogle Scholar
  95. Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56CrossRefGoogle Scholar
  96. Schrauzer GN, Holland RJ, Seck JA (1971) The mechanism of coenzyme B12 action in dioldehydrase. J Am Chem Soc 93:1503–1505PubMedCrossRefGoogle Scholar
  97. Schumacher W, Holliger C (1996) The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in “Dehalobacter restrictus”. J Bacteriol 178:2328–2333PubMedPubMedCentralGoogle Scholar
  98. Schumacher W, Holliger C, Zehnder AJ, Hagen WR (1997) Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett 409:421–425PubMedCrossRefGoogle Scholar
  99. Siebert A, Neumann A, Schubert T, Diekert G (2002) A non-dechlorinating strain of Dehalospirillum multivorans: evidence for a key role of the corrinoid cofactor in the synthesis of an active tetrachloroethene dehalogenase. Arch Microbiol 178:443–449PubMedCrossRefGoogle Scholar
  100. Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F1F0 ATP synthases. J Bioenerg Biomembr 46:229–241PubMedCrossRefGoogle Scholar
  101. Sjuts H, Fisher K, Dunstan MS, Rigby SE, Leys D (2012) Heterologous expression, purification and cofactor reconstitution of the reductive dehalogenase PceA from Dehalobacter restrictus. Protein Expr Purif 85:224–229PubMedCrossRefGoogle Scholar
  102. Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73PubMedCrossRefGoogle Scholar
  103. Smidt H, van Leest M, van der Oost J, de Vos WM (2000) Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J Bacteriol 182:5683–5691PubMedPubMedCentralCrossRefGoogle Scholar
  104. Stupperich E, Steiner I, Rühlemann M (1986) Isolation and analysis of bacterial cobamides by high-performance liquid chromatography. Anal Biochem 155:365–370PubMedCrossRefGoogle Scholar
  105. Suyama A, Yamashita M, Yoshino S, Furukawa K (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184:3419–3425PubMedPubMedCentralCrossRefGoogle Scholar
  106. Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383PubMedCrossRefGoogle Scholar
  107. Tang S, Chan WW, Fletcher KE, Seifert J, Liang X, Löffler FE, Edwards EA, Adrian L (2013) Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl Environ Microbiol 79:974–981PubMedPubMedCentralCrossRefGoogle Scholar
  108. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedPubMedCentralGoogle Scholar
  109. Thibodeau J, Gauthier A, Duguay M, Villemur R, Lépine F, Juteau P, Beaudet R (2004) Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 70:4532–4537PubMedPubMedCentralCrossRefGoogle Scholar
  110. Townsend GT, Suflita JM (1996) Characterization of chloroethylene dehalogenation by cell extracts of Desulfomonile tiedjei and its relationship to chlorobenzoate dehalogenation. Appl Environ Microbiol 62:2850–2853PubMedPubMedCentralGoogle Scholar
  111. Turner RJ, Papish AL, Sargent F (2004) Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50:225–238PubMedCrossRefGoogle Scholar
  112. van de Pas BA, Smidt H, Hagen WR, van der Oost J, Schraa G, Stams AJ, de Vos WM (1999) Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274:20287–20292PubMedCrossRefGoogle Scholar
  113. van de Pas BA, Jansen S, Dijkema C, Schraa G, de Vos WM, Stams AJ (2001a) Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Appl Environ Microbiol 67:3958–3963PubMedPubMedCentralCrossRefGoogle Scholar
  114. van de Pas BA, Gerritse J, de Vos WM, Schraa G, Stams AJ (2001b) Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. Arch Microbiol 176:165–169PubMedCrossRefGoogle Scholar
  115. Vogel TM, Criddle CS, McCarty PL (1987) ES critical reviews: transformations of halogenated aliphatic compounds. Environ Sci Technol 21:722–736PubMedCrossRefGoogle Scholar
  116. Wagner DD, Hug LA, Hatt JK, Spitzmiller MR, Padilla-Crespo E, Ritalahti KM, Edwards EA, Konstantinidis KT, Löffler FE (2012) Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genom 13:200CrossRefGoogle Scholar
  117. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002) The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19:390–412PubMedCrossRefGoogle Scholar
  118. Weber J, Senior AE (2003) ATP synthesis driven by proton transport in F1F0-ATP synthase. FEBS Lett 545:61–70PubMedCrossRefGoogle Scholar
  119. White DC, Geyer R, Peacock AD, Hedrick DB, Koenigsberg SS, Sung Y, He J, Löffler FE (2005) Phospholipid furan fatty acids and ubiquinone-8: lipid biomarkers that may protect Dehalococcoides strains from free radicals. Appl Environ Microbiol 71:8426–8433PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wohlfarth G, Diekert G (1997) Anaerobic dehalogenases. Curr Opin Biotechnol 8:290–295PubMedCrossRefGoogle Scholar
  121. Wood JM, Kennedy FS, Wolfe RS (1968) The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 7:1707–1713PubMedCrossRefGoogle Scholar
  122. Wunsch P, Zumft WG (2005) Functional domains of NosR, a novel transmembrane iron–sulfur flavoprotein necessary for nitrous oxide respiration. J Bacteriol 187:1992–2001PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yan J, Ritalahti KM, Wagner DD, Löffler FE (2012) Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl Environ Microbiol 78:6630–6636PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ye L, Schilhabel A, Bartram S, Boland W, Diekert G (2010) Reductive dehalogenation of brominated ethenes by Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S. Environ Microbiol 12:501–509PubMedCrossRefGoogle Scholar
  125. Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L, Taga ME (2012) Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Appl Environ Microbiol 78:7745–7752PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zehnder AJ, Wuhrmann K (1976) Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166PubMedCrossRefGoogle Scholar
  127. Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Applied and Ecological Microbiology, Institute of MicrobiologyFriedrich Schiller UniversityJenaGermany

Personalised recommendations