Electron Acceptor Interactions Between Organohalide-Respiring Bacteria: Cross-Feeding, Competition, and Inhibition

  • Kai Wei
  • Ariel Grostern
  • Winnie W. M. Chan
  • Ruth E. Richardson
  • Elizabeth A. EdwardsEmail author


Because of the stepwise, progressive nature of reductive dehalogenation reactions, polyhalogenated parent electron acceptors and their corresponding intermediary dehalogenation products are almost always simultaneously present in the environments where these processes occur. Moreover, a wide variety of polyhalogenated industrial chemicals find their way into the environment, frequently at the same manufacturing or processing facility, resulting in complex mixtures of pollutants in the subsurface. Therefore, cross-feeding, competition , and inhibition are inevitable in these systems and their magnitude or impact must be quantified to better predict and promote the rate and extent of detoxification. Numerical simulations of reactive transport that incorporate fitted parameters describing these processes provide useful tools to evaluate scenarios. Direct experimental evidence of inhibition or competition using defined enzyme and microbial assays provides a more mechanistic understanding of these effects. Combining carefully executed, well-designed experiments with modeling ultimately provides the most useful data for fundamental understanding as well as decision-making in the context of remediation .


Microbial Community Electron Acceptor Enrichment Culture Vinyl Chloride Methyl Viologen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the contributions of the many students, postdocs, and industrial and academic collaborators who have contributed to the research and insights into reductive dehalogenation and anaerobic microbial processes over the years.


  1. Adamson DT, Parkin GF (2000) Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetraehloroethene-dechlorinating enrichment culture. Environ Sci Technol 34(10):1959–1965CrossRefGoogle Scholar
  2. Adrian L, Manz W, Szewzyk U, Görisch H (1998) Physiological characterization of a bacterial consortium reductively dechlorinating 1,2,3- and 1,2,4-trichlorobenzene. Appl Environ Microbiol 64(2):496–503PubMedPubMedCentralGoogle Scholar
  3. Aulenta F, Pera A, Rossetti S, Papini MP, Majone M (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res 41(1):27–38CrossRefPubMedGoogle Scholar
  4. Ballerstedt H, Hantke J, Bunge M, Werner B, Gerritse J, Andreesen JR, Lechner U (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol Ecol 47(2):223–234CrossRefPubMedGoogle Scholar
  5. Becker JG (2006) A modeling study and implications of competition between Dehalococcoides ethenogenes and other tetrachloroethene-respiring bacteria. Environ Sci Technol 40(14):4473–4480CrossRefPubMedGoogle Scholar
  6. Becker JG, Seagren EA (2009) Modeling the effects of microbial competition and hydrodynamics on the dissolution and detoxification of dense nonaqueous phase liquid contaminants. Environ Sci Technol 43(3):870–877CrossRefPubMedGoogle Scholar
  7. Bedard DL (2008) A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls—from sediment to defined medium. Annu Rev Microbiol 62(1):253–270CrossRefPubMedGoogle Scholar
  8. Berggren DRV, Marshall IPG, Azizian MF, Spormann AM, Semprini L (2013) Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Environ Sci Technol 47(4):1879–1886CrossRefPubMedGoogle Scholar
  9. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346(6208):455–458CrossRefPubMedGoogle Scholar
  10. Brisson VL, West KA, Lee PKH, Tringe SG, Brodie EL, Alvarez-Cohen L (2012) Metagenomic analysis of a stable trichloroethene-degrading microbial community. ISME J 6(9):1702–1714CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chambon JC, Bjerg PL, Scheutz C, Baelum J, Jakobsen R, Binning PJ (2013) Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Biotechnol Bioeng 110(1):1–23CrossRefPubMedGoogle Scholar
  12. Chambon JC, Broholm MM, Binning PJ, Bjerg PL (2010) Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system. J Contam Hydrol 112(1–4):77–90CrossRefPubMedGoogle Scholar
  13. Chan CCH, Mundle SOC, Eckert T, Liang X, Tang S, Lacrampe-Couloume G, Edwards EA, Sherwood Lollar B (2012) Large carbon isotope fractionation during biodegradation of chloroform by Dehalobacter cultures. Environ Sci Technol 46:10154–10160PubMedGoogle Scholar
  14. Chan WWM, Grostern A, Loffler FE, Edwards EA (2011) Quantifying the effects of 1,1,1-trichloroethane and 1,1-dichloroethane on chlorinated ethene reductive dehalogenases. Environ Sci Technol 45(22):9693–9702CrossRefPubMedGoogle Scholar
  15. Chen MJ, Abriola LM, Amos BK, Suchomel EJ, Pennell KD, Löffler FE, Christ JA (2013) Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis. J Contam Hydrol 151:117–130CrossRefPubMedGoogle Scholar
  16. Christ JA, Abriola LM (2007) Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. Adv Water Resour 30(6–7):1547–1561CrossRefGoogle Scholar
  17. Chung J, Rittmann BE (2008) Simultaneous bio-reduction of trichloroethene, trichloroethane, and chloroform using a hydrogen-based membrane biofilm reactor. Water Sci Technol 58(3):495–501CrossRefPubMedGoogle Scholar
  18. Cupples AM, Spormann AM, McCarty PL (2004) Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Environ Sci Technol 38(18):4768–4774CrossRefPubMedGoogle Scholar
  19. Daprato RC, Löffler FE, Hughes JB (2007) Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy. Environ Sci Technol 41(7):2261–2269CrossRefPubMedGoogle Scholar
  20. Demirtepe H, Kjellerup B, Sowers KR, Imamoglu I (2015) Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model. J Hazard Mater 296:120–127CrossRefPubMedGoogle Scholar
  21. Dillehay JL, Bowman KS, Yan J, Rainey FA, Moe WM (2014) Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp. Biodegradation 25(2):301–312CrossRefPubMedGoogle Scholar
  22. Doherty RE (2000) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the united states: part 2–trichloroethylene and 1,1,1-trichloroethane. Environ Forens 1(2):83–93CrossRefGoogle Scholar
  23. Duchesneau MN, Workman R, Baddour FR, Dennis P (2007) Combined Dehalobacter and Dehalococcoides bioaugmentation for bioremediation of 1,1,1-trichloroethane and chlorinatedethenes. Paper presented at the 9th international in situ and on-site bioremediation symposium, Baltimore, MarylandGoogle Scholar
  24. Duhamel M, Edwards EA (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 58(3):538–549CrossRefPubMedGoogle Scholar
  25. Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36(17):4193–4202CrossRefPubMedGoogle Scholar
  26. Fagervold SK, Watts JEM, May HD, Sowers KR (2005) Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different chloroflexi phylotypes. Appl Environ Microbiol 71(12):8085–8090CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fennell DE, Gossett JM (1998) Modeling the production of and competition for hydrogen in a dechlorinating culture. Becker, Jennifer G, Research Support, US Govt, Non-PHS United States. Environ Sci Technol 40(14):4473–4480 (2006 July 15); 32(16):2450–2460Google Scholar
  28. Futagami T, Okamoto F, Hashimoto H, Fukuzawa K, Higashi K, Nazir K, Wada E, Suyama A, Takegawa K, Goto M, Nakamura K, Furukawa K (2011) Enrichment and characterization of a trichloroethene-dechlorinating consortium containing multiple “Dehalococcoides” strains. Biosci Biotechnol Biochem 75(7):1268–1274CrossRefPubMedGoogle Scholar
  29. Grostern A, Chan WWM, Edwards EA (2009) 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environ Sci Technol 43(17):6799–6807CrossRefPubMedGoogle Scholar
  30. Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053–1060CrossRefPubMedGoogle Scholar
  31. Grostern A, Edwards EA (2006a) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72(12):7849–7856CrossRefPubMedPubMedCentralGoogle Scholar
  32. Grostern A, Edwards EA (2006b) Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 72(1):428–436CrossRefPubMedPubMedCentralGoogle Scholar
  33. Haest PJ, Springael D, Seuntjens P, Smolders E (2012) Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL. Chemosphere 89(11):1369–1375CrossRefPubMedGoogle Scholar
  34. Haest PJ, Springael D, Smolders E (2010) Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models. Water Res 44(1):331–339CrossRefPubMedGoogle Scholar
  35. Häggblom MM, Bossert ID (2003) Dehalogenation: microbial processes and environmental applications. Springer, BerlinGoogle Scholar
  36. He J, Holmes VF, Lee PK, Alvarez-Cohen L (2007) Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73(9):2847–2853CrossRefPubMedPubMedCentralGoogle Scholar
  37. He JZ, Robrock KR, Alvarez-Cohen L (2006) Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ Sci Technol 40(14):4429–4434CrossRefPubMedGoogle Scholar
  38. Heavner GLW, Rowe AR, Mansfeldt CB, Pan JK, Gossett JM, Richardson RE (2013) Molecular biomarker-based biokinetic modeling of a PCE-dechlorinating and methanogenic mixed culture. Environ Sci Technol 47(8):3724–3733CrossRefPubMedGoogle Scholar
  39. Huang D, Becker JG (2011) Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations. Environ Sci Technol 45(3):1093–1099CrossRefPubMedGoogle Scholar
  40. Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307CrossRefGoogle Scholar
  41. Ise K, Suto K, Inoue C (2011) Microbial diversity and changes in the distribution of dehalogenase genes during dechlorination with different concentrations of cis-DCE. Environ Sci Technol 45(12):5339–5345CrossRefPubMedGoogle Scholar
  42. Lai YJ, Becker JG (2013) Compounded effects of chlorinated ethene inhibition on ecological interactions and population abundance in a DehalococcoidesDehalobacter coculture. Environ Sci Technol 47(3):1518–1525PubMedGoogle Scholar
  43. Lee IS, Bae JH, Yang YR, McCarty PL (2004) Simulated and experimental evaluation of factors affecting the rate and extent of reductive dehalogenation of chloroethenes with glucose. J Contam Hydrol 74(1–4):313–331CrossRefPubMedGoogle Scholar
  44. Löffler FE, Sanford RA, Tiedje JM (1996) Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23. Appl Environ Microbiol 62(10):3809–3813PubMedPubMedCentralGoogle Scholar
  45. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63(Pt 2):625–635Google Scholar
  46. MacNelly A, Kai M, Svatos M, Diekert G, Schubert T (2014) Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. App Envron Microbiol 80(14):4313–4322Google Scholar
  47. Maillard J, Charnay M-P, Regeard C, Rohrbach-Brandt E, Rouzeau-Szynalski K, Rossi P, Holliger C (2011) Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation 22(5):949–960CrossRefPubMedGoogle Scholar
  48. Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA (2012) Discovery of a trans-Dichloroethene-respiring Dehalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol 78(15):5280–5287CrossRefPubMedPubMedCentralGoogle Scholar
  49. McGuire T, Hughes JB (2003) Effects of surfactants on the dechlorination of chlorinated ethenes. Environ Toxicol Chem 22(11):2630–2638CrossRefPubMedGoogle Scholar
  50. Mendoza-Sanchez I, Cunningham J (2012) Efficient algorithms for modeling the transport and biodegradation of chlorinated ethenes in groundwater. Transp Porous Media 92(1):165–185CrossRefGoogle Scholar
  51. Nelson JL, Fung JM, Cadillo-Quiroz H, Cheng X, Zinder SH (2011) A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environ Sci Technol 45(16):6806–6813CrossRefPubMedGoogle Scholar
  52. Nelson JL, Jiang J, Zinder SH (2014) Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. Environ Sci Technol 48(7):3776–3782CrossRefPubMedGoogle Scholar
  53. Nijenhuis I, Zinder SH (2005) Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 71(3):1664–1667CrossRefPubMedPubMedCentralGoogle Scholar
  54. Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann A (2015) Heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J Am Chem Soc 137:3525–3532CrossRefPubMedPubMedCentralGoogle Scholar
  55. Paul L, Herrmann S, Koch CB, Philips J, Smolders E (2013) Inhibition of microbial trichloroethylene dechorination by Fe (III) reduction depends on Fe mineralogy: A batch study using the bioaugmentation culture KB-1. Water Res 47(7):2543–2554CrossRefPubMedGoogle Scholar
  56. Paul L, Smolders E (2014) Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene. Chemosphere 111:471–477CrossRefPubMedGoogle Scholar
  57. Payne KA, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SE, Leys D (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517(7535):513–516CrossRefPubMedGoogle Scholar
  58. Pon G, Hyman MR, Semprini L (2003) Acetylene inhibition of trichloroethene and vinyl chloride reductive dechlorination. Environ Sci Technol 37(14):3181–3188CrossRefPubMedGoogle Scholar
  59. Popat SC, Deshusses MA (2011) Kinetics and inhibition of reductive dechlorination of trichloroethene, cis-1,2-dichloroethene and vinyl chloride in a continuously fed anaerobic biofilm reactor. Environ Sci Technol 45(4):1569–1578CrossRefPubMedGoogle Scholar
  60. Ritalahti KM, Amos BK, Sung Y, Wu QZ, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72(4):2765–2774CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rosner BM, McCarty PL, Spormann AM (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl Environ Microbiol 63(11):4139–4144PubMedPubMedCentralGoogle Scholar
  62. Rouzeau-Szynalski K, Maillard J, Holliger C (2011) Frequent concomitant presence of Desulfitobacterium spp. and “Dehalococcoides” spp. in chloroethene-dechlorinating microbial communities. Appl Microbiol Biotechnol 90(1):361–368CrossRefPubMedGoogle Scholar
  63. Sabalowsky AR, Semprini L (2010) Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations: I. Batch-Fed Reactors. Biotechnol Bioeng 107(3):529–539CrossRefPubMedGoogle Scholar
  64. Schaefer CE, Condee CW, Vainberg S, Steffan RJ (2008) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75:141–148CrossRefGoogle Scholar
  65. Scheutz C, Durant ND, Hansen MH, Bjerg PL (2011) Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface—a critical review. Water Res 45(9):2701–2723CrossRefPubMedGoogle Scholar
  66. Sleep BE, Sykes JF (1993) Compositional simulation of groundwater contamination by organic compounds: 1. model development and verification. Water Resour Res 29(6):1697–1708CrossRefGoogle Scholar
  67. Smatlak CR, Gossett JM, Zinder SH (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol 30(9):2850–2858CrossRefGoogle Scholar
  68. Tang S, Edwards EA (2013) Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1, 1, 1-trichloroethane and 1, 1-dichloroethane. Philos Trans R Soc B: Biol Sci 368 (1616)Google Scholar
  69. Tang S, Gong Y, Edwards EA (2012) Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS ONE 7(12):e52038CrossRefPubMedPubMedCentralGoogle Scholar
  70. Townsend GT, Suflita JM (1997) Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei. Appl Environmental Microbiology 63(9):3594–3599Google Scholar
  71. Vainberg S, Condee CW, Steffan RJ (2009) Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J Ind Microbiol Biotechnol 36(9):1189–1197CrossRefPubMedGoogle Scholar
  72. Vandermeeren P, Herrmann S, Cichocka D, Busschaert P, Lievens B, Richnow HH, Springael D (2014) Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation 25(5):757–776CrossRefPubMedGoogle Scholar
  73. Watts JE, Wu Q, Schreier SB, May HD, Sowers KR (2001) Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ Microbiol 3(11):710–719CrossRefPubMedGoogle Scholar
  74. Wei K (2012) Substrates and substrate interactions in anaerobic dechlorinating cultures. Master’s Thesis, University of Toronto, Toronto, ONGoogle Scholar
  75. Wei N, Finneran KT (2011) Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe(III) reduction does not always inhibit complete dechlorination. Environ Sci Technol 45(17):7422–7430CrossRefPubMedGoogle Scholar
  76. Wei N, Finneran KT (2013) Low and high acetate amendments are equally as effective at promoting complete dechlorination of trichloroethylene (TCE). Biodegradation 24(3):413–425CrossRefPubMedGoogle Scholar
  77. Yang YR, Pesaro M, Sigler W, Zeyer J (2005) Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community. Water Res 39(16):3954–3966CrossRefPubMedGoogle Scholar
  78. Yeh DH, Pennell KD, Pavlostathis SG (1999) Effect of tween surfactants on methanogenesis and microbial reductive dechlorination of hexachlorobenzene. Environ Toxicol Chem 18(7):1408–1416CrossRefGoogle Scholar
  79. Yu S, Semprini L (2004) Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Biotechnol Bioeng 88(4):451–464CrossRefPubMedGoogle Scholar
  80. Yu SH, Dolan ME, Semprini L (2005) Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures. Environ Sci Technol 39(1):195–205CrossRefPubMedGoogle Scholar
  81. Yu ZT, Smith GB (2000) Inhibition of methanogenesis by C-1- and C-2-polychlorinated aliphatic hydrocarbons. Environ Toxicol Chem 19(9):2212–2217CrossRefGoogle Scholar
  82. Zhang H, Ziv-El M, Rittmann BE, Krajmalnik-Brown R (2010) Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membrane-biofilm reactors. Environ Sci Technol 44(13):5159–5164CrossRefPubMedGoogle Scholar
  83. Ziv-El M, Popat SC, Parameswaran P, Kang DW, Polasko A, Halden RU, Rittmann BE, Krajmalnik-Brown R (2012) Using electron balances and molecular techniques to assess trichoroethene-induced shifts to a dechlorinating microbial community. Biotechnol Bioeng 109(9):2230–2239CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kai Wei
    • 1
  • Ariel Grostern
    • 1
  • Winnie W. M. Chan
    • 1
  • Ruth E. Richardson
    • 2
  • Elizabeth A. Edwards
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada
  2. 2.Department of Civil and Environmental EngineeringCornell University IthacaNew YorkUSA

Personalised recommendations