Comparative Physiology of Organohalide-Respiring Bacteria

  • Koshlan Mayer-Blackwell
  • Holly Sewell
  • Maeva Fincker
  • Alfred M. SpormannEmail author


The potential for reductive organohalide respiration is relatively widespread among bacteria. In this chapter, we highlight metabolic differences between facultative and obligate organohalide-respiring bacteria. In addition, we compare the genomic architecture and evolution of the bacteria that comprise the obligate organohalide-respiring Dehalococcoides, Dehalobacter, and Dehalogenimonas genera. Major unresolved questions remain about the necessary and sufficient enzymes for energy conservation coupled to reductive dehalogenation in these microorganisms. Although comparative physiology among these three genera reveals considerable metabolic and eco-physiological diversity consistent with their unique phylogeny, these microorganisms share similar genomic signatures, suggestive of convergent adaptive niche specialization to catabolism of naturally occurring organohalide compounds.


Genomic Island Substrate Level Phosphorylation Reductive Dehalogenation Reductive Dehalogenases Molar Growth Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adrian L, Hansen SK, Fung JM, Görisch H, Zinder SH (2007) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41:2318–2323. doi: 10.1021/es062076m CrossRefPubMedGoogle Scholar
  2. Ahn Y-B, Kerkhof LJ, Häggblom MM (2009) Desulfoluna spongiiphila sp. nov., a dehalogenating bacterium in the Desulfobacteraceae from the marine sponge Aplysina aerophoba. Int J Syst Evol Microbiol 59:2133–2139. doi: 10.1099/ijs.0.005884-0 CrossRefPubMedGoogle Scholar
  3. Anraku Y, Gennis RB (1987) The aerobic respiratory chain of Escherichia coli. Trends Biochem Sci 12:262–266. doi: 10.1016/0968-0004(87)90131-9 CrossRefGoogle Scholar
  4. Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC (2009) Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE 4:e4345. doi: 10.1371/journal.pone.0004345 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346:455–458. doi: 10.1126/science.1258118 CrossRefPubMedGoogle Scholar
  6. Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM (2013) Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater. Int J Syst Evol Microbiol 63:1492–1498. doi: 10.1099/ijs.0.045054-0 CrossRefPubMedGoogle Scholar
  7. Boyle AW, Phelps CD, Young LY (1999) Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl Environ Microbiol 65:1133–1140PubMedPubMedCentralGoogle Scholar
  8. Brisson VL, West KA, Lee PK, Tringe SG, Brodie EL, Alvarez-Cohen L (2012) Metagenomic analysis of a stable trichloroethene-degrading microbial community. ISME J 6:1702–1714. doi: 10.1038/ismej.2012.15 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1827:94–113. doi: 10.1016/j.bbabio.2012.07.002 CrossRefGoogle Scholar
  10. Chen K, Huang L, Xu C, Liu X, He J, Zinder SH, Li S, Jiang J (2013) Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol Microbiol 89:1121–1139. doi: 10.1111/mmi.12332 CrossRefPubMedGoogle Scholar
  11. Christiansen N, Ahring B (1996) Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int J Syst Evol Microbiol 46:442–448. doi: 10.1099/00207713-46-2-442 Google Scholar
  12. De Wildeman S, Linthout G, Van Langenhove H, Verstraete W (2004) Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane. Appl Microbiol Biotechnol 63:609–612. doi: 10.1007/s00253-003-1363-y CrossRefPubMedGoogle Scholar
  13. Dolfing J, Novak I (2014) The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments. Biodegradation 26:15–27. doi: 10.1007/s10532-014-9710-5 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445. doi: 10.1038/nature09066 CrossRefPubMedGoogle Scholar
  15. Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33:169–177. doi: 10.1023/A:1010722717257 CrossRefPubMedGoogle Scholar
  16. Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5. doi: 10.1016/S0014-5793(00)01867-6 CrossRefPubMedGoogle Scholar
  17. Goris T, Schubert T, Gadkari J, Wubet T, Tarkka M, Buscot F, Adrian L, Diekert G (2014) Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ Microbiol 16:3562–3580. doi: 10.1111/1462-2920.12589 CrossRefPubMedGoogle Scholar
  18. Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. 61:237–258. doi:  10.1146/annurev.micro.61.080706.093257
  19. He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65. doi: 10.1038/nature01717 CrossRefPubMedGoogle Scholar
  20. He J, Robrock KR, Alvarez-Cohen L (2006) Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ Sci Technol 40:4429–4434. doi: 10.1021/es052508d CrossRefPubMedGoogle Scholar
  21. Heavner GLW, Rowe AR, Mansfeldt CB, Pan JK, Gossett JM, Richardson RE (2013) Molecular biomarker-based biokinetic modeling of a PCE-dechlorinating and methanogenic mixed culture. Environ Sci Technol 47:3724–3733. doi: 10.1021/es303517s CrossRefPubMedGoogle Scholar
  22. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJB (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321. doi: 10.1007/s002030050577 CrossRefPubMedGoogle Scholar
  23. Hölscher T, Krajmalnik Brown R, Ritalahti KM, von Wintzingerode F, Görisch H, Löffler FE, Adrian L (2004) Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides. Appl Environ Microbiol 70:5290–5297. doi: 10.1128/AEM.70.9.5290-5297.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hug LA, Salehi M, Nuin P, Tillier ER, Edwards EA (2011) Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp. Appl Environ Microbiol 77:5361–5369. doi: 10.1128/AEM.00063-11 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368:20120322. doi: 10.1098/rstb.2012.0322 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351. doi: 10.1128/JB.00090-10 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Johnson DR, Brodie EL, Hubbard AE, Andersen GL, Zinder SH, Alvarez-Cohen L (2008) Temporal transcriptomic microarray analysis of “Dehalococcoides ethenogenes” strain 195 during the transition into stationary phase. Appl Environ Microbiol 74:2864–2872. doi: 10.1128/AEM.02208-07 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. doi: 10.1093/bioinformatics/btu031 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78:1288–1291. doi: 10.1128/AEM.07325-11 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Krajmalnik Brown R, Sung Y, Ritalahti KM, Saunders FM, Löffler FE (2007) Environmental distribution of the trichloroethene reductive dehalogenase gene (tceA) suggests lateral gene transfer among Dehalococcoides. FEMS Microbiol Ecol 59:206–214. doi: 10.1111/j.1574-6941.2006.00243.x CrossRefPubMedGoogle Scholar
  31. Kreft J-U, Bonhoeffer S (2005) The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiology 151:637–641. doi: 10.1099/mic.0.27415-0 CrossRefPubMedGoogle Scholar
  32. Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Evol Microbiol 47:1262–1263. doi: 10.1099/00207713-47-4-1262 Google Scholar
  33. Kruse T, van de Pas BA, Atteia A, Krab K, Hagen WR, Goodwin L, Chain P, Boeren S, Maphosa F, Schraa G, de Vos WM, van der Oost J, Smidt H, Stams AJM (2015) Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. J Bacteriol 197:893–904. doi: 10.1128/JB.02370-14 CrossRefPubMedGoogle Scholar
  34. Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound|respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273. doi: 10.1038/nbt1131 CrossRefPubMedGoogle Scholar
  35. Lawrence JG (1997) Selfish operons and speciation by gene transfer. Trends Microbiol 5:355–359. doi: 10.1016/S0966-842X(97)01110-4 CrossRefPubMedGoogle Scholar
  36. Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523. doi: 10.1016/S1369-5274(99)00010-7 CrossRefPubMedGoogle Scholar
  37. Lee PKH, Cheng D, Hu P, West KA, Dick GJ, Brodie EL, Andersen GL, Zinder SH, He J, Alvarez-Cohen L (2011) Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. ISME J 5:1014–1024. doi: 10.1038/ismej.2010.202 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14:883–894. doi: 10.1111/j.1462-2920.2011.02656.x CrossRefPubMedGoogle Scholar
  39. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635. doi: 10.1099/ijs.0.034926-0 CrossRefPubMedGoogle Scholar
  40. Lohner ST, Spormann AM (2013) Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Philos Trans R Soc Lond B Biol Sci 368:20120326. doi: 10.1098/rstb.2012.0326 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mac Nelly A, Kai M, Svatoš A, Diekert G, Schubert T (2014) Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. Appl Environ Microbiol 80:4313–4322. doi: 10.1128/AEM.00881-14 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mackiewicz M, Wiegel J (1998) Comparison of energy and growth yields for Desulfitobacterium dehalogenans during utilization of chlorophenol and various traditional electron acceptors. Appl Environ Microbiol 64:352–355PubMedPubMedCentralGoogle Scholar
  43. Maphosa F, De Vos WM, Smidt H (2010) Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide‐respiring bacteria. Trends Biotech 28(6):308–316. doi: 10.1016/j.tibtech.2010.03.005
  44. Marco-Urrea E, Nijenhuis I, Adrian L (2011) Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45:1555–1562. doi: 10.1021/es1023459 CrossRefPubMedGoogle Scholar
  45. Marshall IPG, Azizian MF, Semprini L, Spormann AM (2014) Inferring community dynamics of organohalide-respiring bacteria in chemostats by covariance of rdhA gene abundance. FEMS Microbiol Ecol 87:428–440. doi: 10.1111/1574-6941.12235 CrossRefPubMedGoogle Scholar
  46. Mayer-Blackwell K, Azizian MF, Machak C, Vitale E, Carpani G, de Ferra F, Semprini L, Spormann AM (2014) Nanoliter qPCR platform for highly parallel, quantitative assessment of reductive dehalogenase genes and populations of dehalogenating microorganisms in complex environments. Environ Sci Technol 48:9659–9667. doi: 10.1021/es500918w CrossRefPubMedGoogle Scholar
  47. Maymó-Gatell X, Chien Y-T, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. doi: 10.1126/science.276.5318.1568 CrossRefPubMedGoogle Scholar
  48. McMurdie PJ, Behrens SF, Holmes S, Spormann AM (2007) Unusual codon bias in vinyl chloride reductase genes of Dehalococcoides species. Appl Environ Microbiol 73:2744–2747. doi: 10.1128/AEM.02768-06 CrossRefPubMedPubMedCentralGoogle Scholar
  49. McMurdie PJ, Behrens SF, Müller JA, Göke J, Ritalahti KM, Wagner R, Goltsman E, Lapidus A, Holmes S, Löffler FE, Spormann AM (2009) Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet 5:e1000714. doi: 10.1371/journal.pgen.1000714 CrossRefPubMedPubMedCentralGoogle Scholar
  50. McMurdie PJ, Hug LA, Edwards EA, Holmes S, Spormann AM (2011) Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genom 12:287. doi: 10.1186/1471-2164-12-287 CrossRefGoogle Scholar
  51. Miller E, Wohlfarth G, Diekert G (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch Microbiol 169:497–502. doi: 10.1007/s002030050602 CrossRefPubMedGoogle Scholar
  52. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59:2692–2697. doi: 10.1099/ijs.0.011502-0 CrossRefPubMedGoogle Scholar
  53. Mohn WW, Tiedje JM (1990) Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch Microbiol 153:267–271. doi: 10.1007/BF00249080 CrossRefPubMedGoogle Scholar
  54. Moparthi VK, Hägerhäll C (2011) The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J of Mol Evol, 72(5-6):484–497. doi: 10.1007/s00239-011-9447-2
  55. Morris RM, Fung JM, Rahm BG, Zhang S, Freedman DL, Zinder SH, Richardson RE (2007) Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. Appl Environ Microbiol 73:320–326. doi: 10.1128/AEM.02129-06 CrossRefPubMedGoogle Scholar
  56. Mukherjee K, Bowman KS, Rainey FA, Siddaramappa S, Challacombe JF, Moe WM (2014) Dehalogenimonas lykanthroporepellens BL-DC-9T simultaneously transcribes many rdhA genes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors. FEMS Microbiol Lett 354:111–118. doi: 10.1111/1574-6968.12434 CrossRefPubMedGoogle Scholar
  57. Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888. doi: 10.1128/AEM.70.8.4880-4888.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Myers JM, Myers CR (2000) Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J Bacteriol 182:67–75. doi: 10.1128/JB.182.1.67-75.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Neumann A, Wohlfarth G, Diekert G (1996) Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J Biol Chem 271:16515–16519CrossRefPubMedGoogle Scholar
  60. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274. doi: 10.1128/JB.188.6.2262-2274.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann AM (2015) Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J Am Chem Soc 137:3525–3532. doi: 10.1021/ja511653d CrossRefPubMedPubMedCentralGoogle Scholar
  62. Payne KAP, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SEJ, Leys D (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517:513–516. doi: 10.1038/nature13901 CrossRefPubMedGoogle Scholar
  63. Poole RK, Ingledew WJ (1987) Pathways of electrons to oxygen: Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Am Soc Microbiol (Washington, DC)Google Scholar
  64. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196. doi: 10.1093/nar/gkm864 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. doi: 10.1093/bioinformatics/bts252 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Regeard C, Maillard J, Dufraigne C, Deschavanne P, Holliger C (2005) Indications for acquisition of reductive dehalogenase genes through horizontal gene transfer by Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 71:2955–2961. doi: 10.1128/AEM.71.6.2955-2961.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2013) The restricted metabolism of the obligate organohalide-respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos Trans R Soci Lond B Biol Sci 368:20120325. doi: 10.1098/rstb.2012.0325 CrossRefGoogle Scholar
  68. Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an Aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900. doi: 10.1128/AEM.68.2.893-900.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L (2013) Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos Trans R Soc Lond B Biol Sci 368:20120321. doi: 10.1098/rstb.2012.0321 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307:105–108. doi: 10.1126/science.1102226 CrossRefPubMedGoogle Scholar
  71. Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce D, Detter C, Tapia R, Han S, Goodwin L, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Land M, Chang Y-J, Kyrpides NC, Ovchinnikova G, Hauser L, Lapidus A, Yan J, Bowman KS, da Costa MS, Rainey FA, Moe WM (2012) Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to “Dehalococcoides” strains. Stand Genomic Sci 6:251–264. doi: 10.4056/sigs.2806097 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sjuts H, Fisher K, Dunstan MS, Rigby SE, Leys D (2012) Heterologous expression, purification and cofactor reconstitution of the reductive dehalogenase PceA from Dehalobacter restrictus. Protein Expr Purif 85:224–229. doi: 10.1016/j.pep.2012.08.007 CrossRefPubMedGoogle Scholar
  73. Sun B, Cole JR, Tiedje JM (2001) Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments. Int J Syst Evol Microbiol 51:365–371. doi: 10.1099/00207713-51-2-365 CrossRefPubMedGoogle Scholar
  74. Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Löffler FE (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974. doi: 10.1128/AEM.69.5.2964-2974.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sung Y, Ritalahti KM, Apkarian RP, Löffler FE (2006) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987. doi: 10.1128/AEM.72.3.1980-1987.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Suyama A, Yamashita M, Yoshino S, Furukawa K (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184:3419–3425. doi: 10.1128/JB.184.13.3419-3425.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tang S, Gong Y, Edwards EA (2012) Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS ONE 7:e52038. doi: 10.1371/journal.pone.0052038 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100. doi: 10.1038/ismej.2014.24 PubMedPubMedCentralGoogle Scholar
  79. Trumpower B (1990) The protonmotive Q cycle. Translocation 265:11409–11412Google Scholar
  80. van de Pas BA, Jansen S, Dijkema C, Schraa G, de Vos WM, Stams AJM (2001) Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Appl Environ Microbiol 67:3958–3963. doi: 10.1128/AEM.67.9.3958-3963.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wagner A, Cooper M, Ferdi S, Seifert J, Adrian L (2012a) Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environ Sci Technol 46:8960–8968. doi: 10.1021/es3003519 CrossRefPubMedGoogle Scholar
  82. Wagner DD, Hug LA, Hatt JK, Spitzmiller MR, Padilla-Crespo E, Ritalahti KM, Edwards EA, Konstantinidis KT, Löffler FE (2012b) Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genom 13:200. doi: 10.1186/1471-2164-13-200 CrossRefGoogle Scholar
  83. Weston J, Elisseeff A, Zhou D, Leslie CS, Noble WS (2004) Protein ranking: from local to global structure in the protein similarity network. PNAS 101:6559–6563. doi: 10.1073/pnas.0308067101 CrossRefPubMedPubMedCentralGoogle Scholar
  84. White DC, Geyer R, Peacock AD, Hedrick DB, Koenigsberg SS, Sung Y, He J, Löffler FE (2005) Phospholipid furan fatty acids and ubiquinone-8: lipid biomarkers that may protect Dehalococcoides strains from free radicals. Appl Environ Microbiol 71:8426–8433. doi: 10.1128/AEM.71.12.8426-8433.2005 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Koshlan Mayer-Blackwell
    • 1
  • Holly Sewell
    • 1
  • Maeva Fincker
    • 1
  • Alfred M. Spormann
    • 1
    • 2
    Email author
  1. 1.Civil and Environmental EngineeringStanford UniversityStanfordUSA
  2. 2.Geological and Environmental Sciences, and Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations