Skip to main content

The Genus Sulfurospirillum

  • Chapter
  • First Online:

Abstract

The only organohalide-respiring Epsilonproteobacteria (ε-proteobacteria) described so far are found in the genus Sulfurospirillum . This genus consists of versatile, often microaerophilic bacteria, growing with many different growth substrates. Only a few of these organisms use halogenated compounds, mainly chlorinated ethenes, as electron acceptors. Organohalide respiration was extensively studied in Sulfurospirillum multivorans, but seems to be similar in other reductively dehalogenating Sulfurospirilla like Sulfurospirillum halorespirans. While most Sulfurospirillum species are unable to utilize organohalides as electron acceptors, many of them grow with other toxic substrates such as arsenate or selenate. Other typical electron acceptors are nitrate and sulfur compounds. Electron donors used are pyruvate, hydrogen and formate. The anaerobic respiratory chains of Sulfurospirillum spp. involve most likely menaquinones and cytochromes for most electron donor/acceptor combinations. The growth substrate range which includes many toxic compounds enables many Sulfurospirillum species to thrive in polluted habitats, which is reflected by the presence of these bacteria in many contaminated sites. The genomes of Sulfurospirillum spp. are small to average in size (about 2.5–3 Mbp) and the genes necessary for organohalide respiration, if present, are clustered in one area, including corrinoid biosynthesis genes responsible for production of the unique norpseudovitamin B12. The gene inventory in this area differs from that of other organohalide-respiring bacterial classes in that a putative quinol dehydrogenase and other accessory proteins are encoded. This points to a respiratory chain differing from other organohalide-respiring bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nat 371:750. doi:10.1038/371750a0

    Article  CAS  Google Scholar 

  • Aranda C, Paredes J, Valenzuela C, Lam P, Guillou L (2010) 16S rRNA gene-based molecular analysis of mat-forming and accompanying bacteria covering organically-enriched marine sediments underlying a salmon farm in Southern Chile (Calbuco Island). Gayana 74:125–135

    Google Scholar 

  • Ballerstedt H et al (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol Ecol 47:223–234. doi:10.1016/S0168-6496(03)00282-4

    Article  CAS  PubMed  Google Scholar 

  • Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346:455–458. doi:10.1126/science.1258118

    Google Scholar 

  • Bunge M et al (2007) Biological activity in a heavily organohalogen-contaminated river sediment. Environ Sci Pollut Res 14:3–10. doi:10.1065/espr2006.03.298

    Article  CAS  Google Scholar 

  • Buttet G, Holliger C, Maillard J (2013) Functional genotyping of Sulfurospirillum spp. in mixed cultures allowed the identification of a new tetrachloroethene reductive dehalogenase. Appl Environ Microbiol 79:6941–6947. doi:10.1128/AEM.02312-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell B, Jeanthon C, Kostka J, Luther G, Cary S (2001) Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572. doi:10.1128/AEM.67.10.4566-4572.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Ren N, Wang A, Yu Z, Lee DJ (2008) Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate, nitrate and lactate. Appl Microbiol Biotechnol 79:1071–1077. doi:10.1007/s00253-008-1503-5

    Article  CAS  PubMed  Google Scholar 

  • Cichocka D, Nikolausz M, Haest PJ, Nijenhuis I (2010) Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld. FEMS Microbiol Ecol 72:297–310. doi:10.1111/j.1574-6941.2010.00845.x

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Butler EC, Philp RP, Krumholz LR (2011) Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene. Biodegradation 22:431–444. doi:10.1007/s10532-010-9416-2

    Article  CAS  PubMed  Google Scholar 

  • Dugat-Bony E et al (2011) HiSpOD: probe design for functional DNA microarrays. Bioinformatics 27:641–648. doi:10.1093/bioinformatics/btq712

    Article  CAS  PubMed  Google Scholar 

  • Duhamel M, Edwards EA (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 58:538–549. doi:10.1111/j.1574-6941.2006.00191.x

    Article  CAS  PubMed  Google Scholar 

  • Einsle O et al (1999) Structure of cytochrome c nitrite reductase. Nature 400:476–480. doi:10.1038/22802

    Article  CAS  PubMed  Google Scholar 

  • Eisenbeis M, BauerKreisel P, ScholzMuramatsu H (1997) Studies on the dechlorination of tetrachloroethene to cis-1,2-dichloroethene by Dehalospirillum multivorans in biofilms. Water Sci Technol 36:191–198. doi:10.1016/S0273-1223(97)00352-1

    Article  CAS  Google Scholar 

  • Eisenmann E, Beuerle J, Sulger K, Kroneck P, Schumacher W (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch Microbiol 164:180–185. doi:10.1007/BF02529969

    Article  CAS  Google Scholar 

  • Finster K, Liesack W, Tindall B (1997) Sulfurospirillum arcachonense sp. nov., a new-microaerophilic sulfur-reducing bacterium. Int J Syst Bacteriol 47:1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert MJ et al (2014) Occurrence, diversity, and host association of intestinal Campylobacter, Arcobacter, and Helicobacter in reptiles. PLoS ONE 9:e101599. doi:10.1371/journal.pone.0101599

    Article  PubMed  PubMed Central  Google Scholar 

  • Goris T et al (2014) Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ Microbiol 16:3562–3580 doi:10.1111/1462-2920.12589

    PubMed  Google Scholar 

  • Goris T et al (2015) Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Sci Rep 5:13794. doi:10.1038/srep13794

  • Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443. doi:10.1016/j.femsec.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  • Grigoryan AA et al (2008) Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol 74:4324–4335. doi:10.1128/AEM.00419-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimann AC et al (2007) Hydrogen thresholds and steady-state concentrations associated with microbial arsenate respiration. Environ Sci Technol 41:2311–2317

    Article  CAS  PubMed  Google Scholar 

  • Hery M, Gault A, Rowland H, Lear G, Polya D, Lloyd J (2008) Molecular and cultivation-dependent analysis of metal-reducing bacteria implicated in arsenic mobilisation in south-east asian aquifers. Appl Geochem 23:3215–3223. doi:10.1016/j.apgeochem.2008.07.003

    Article  CAS  Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652. doi:10.1128/AEM.02332-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Prog 19:338–345. doi:10.1021/bp020128f

    Article  CAS  PubMed  Google Scholar 

  • Hubert CR et al (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404. doi:10.1111/j.1462-2920.2011.02521.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hug LA et al (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368:20120322. doi:10.1098/rstb.2012.0322

    Article  PubMed  PubMed Central  Google Scholar 

  • Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (2005) Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria. J Bacteriol 187:3020–3027. doi:10.1128/JB.187.9.3020-3027.2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen A, Finster K (2005) Isolation and characterization of Sulfurospirillum carboxydovorans sp nov., a new microaerophilic carbon monoxide oxidizing epsilon proteobacterium. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 87:339–353. doi:10.1007/s10482-004-6839-y

    Article  CAS  Google Scholar 

  • John M, Schmitz R, Westermann M, Richter W, Diekert G (2006) Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Arch Microbiol 186:99–106. doi:10.1007/s00203-006-0125-5

    Article  CAS  PubMed  Google Scholar 

  • John M, Rubick R, Schmitz RP, Rakoczy J, Schubert T, Diekert G (2009) Retentive memory of bacteria: long-term regulation of dehalorespiration in Sulfurospirillum multivorans. J Bacteriol 191:1650–1655. doi:10.1128/JB.00597-08

    Article  CAS  PubMed  Google Scholar 

  • Kaufhold T, Schmidt M, Cichocka D, Nikolausz M, Nijenhuis I (2013) Dehalogenation of diverse halogenated substrates by a highly enriched Dehalococcoides-containing culture derived from the contaminated mega-site in Bitterfeld. FEMS Microbiol Ecol 83:176–188. doi:10.1111/j.1574-6941.2012.01462.x

    Article  CAS  PubMed  Google Scholar 

  • Kern M, Simon J (2008) Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration. Mol Microbiol 69:1137–1152. doi:10.1111/j.1365-2958.2008.06361.x

    Article  CAS  PubMed  Google Scholar 

  • Keyser M, Britz T, Witthuhn R (2007) Fingerprinting and identification of bacteria present in UASB granules used to treat winery, brewery, distillery or peach-lye canning wastewater. S Afr Enol Vitic 28:69–79

    CAS  Google Scholar 

  • Kimoto H et al (2010) Cloning of a novel dehalogenase from environmental DNA. Biosci Biotechnol Biochem 74:1290–1292. doi:10.1271/bbb.100027

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Ha L, Watanabe K (2007) Sulfurospirillum cavolei sp nov, a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity. Int J Syst Evol Microbiol 57:827–831. doi:10.1099/ijs.0.64823-0

    Article  CAS  PubMed  Google Scholar 

  • Kräutler B et al (2003) The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B(12), a new type of a natural corrinoid. Helv Chim Acta 86:3698–3716

    Google Scholar 

  • Laanbroek H, Kingma W, Veldkamp H (1977) Isolation of an aspartate-fermenting, free-living Campylobacter species. FEMS Microbiol Lett 1:99–102. doi:10.1016/0378-1097(77)90010-6

    Article  CAS  Google Scholar 

  • Lazaro C, Vich D, Hirasawa J, Varesche M (2012) Hydrogen production and consumption of organic acids by a phototrophic microbial consortium. Int J Hydrogen Energy 37:11691–11700. doi:10.1016/j.ijhydene.2012.05.088

    Article  CAS  Google Scholar 

  • Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048. doi:10.1128/AEM.01654-06

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Zhu JN, Zhai ZH, Zhang Q (2010) Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol Lett 309:84–93. doi:10.1111/j.1574-6968.2010.02015.x

    CAS  PubMed  Google Scholar 

  • Li YH, Liu QF, Liu Y, Zhu JN, Zhang Q (2011) Endophytic bacterial diversity in roots of Typha angustifolia L. in the constructed Beijing Cuihu Wetland (China). Res Microbiol 162:124–131. doi:10.1016/j.resmic.2010.09.021

    Article  PubMed  Google Scholar 

  • Li Z, Suzuki D, Zhang C, Yoshida N, Yang S, Katayama A (2013) Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol. J Biosci Bioeng 116:602–609. doi:10.1016/j.jbiosc.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2014) Anaerobic 4-chlorophenol mineralization in an enriched culture under iron-reducing conditions. J Biosci Bioeng. doi:10.1016/j.jbiosc.2014.04.007

    Google Scholar 

  • Liu L, Tsyganova O, Lee D, Chang J, Wang A, Ren N (2013) Double-chamber microbial fuel cells started up under room and low temperatures. Int J Hydrogen Energy 38:15574–15579. doi:10.1016/j.ijhydene.2013.02.090

    Article  CAS  Google Scholar 

  • Lohmayer R, Kappler A, Lösekann-Behrens T, Planer-Friedrich B (2014) Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl Environ Microbiol 80:3141–3149. doi:10.1128/AEM.04220-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Luijten ML et al (2003) Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793

    Article  CAS  PubMed  Google Scholar 

  • Luijten M et al (2004a) Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. FEMS Microbiol Ecol 49:145–150. doi:10.1016/j.femsec.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  • Luijten ML, Roelofsen W, Langenhoff AA, Schraa G, Stams AJ (2004b) Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at a site polluted with chlorinated ethenes. Environ Microbiol 6:646–650. doi:10.1111/j.1462-2920.2004.00608.x

    Article  CAS  PubMed  Google Scholar 

  • Macbeth TW, Cummings DE, Spring S, Petzke LM, Sorenson KS (2004) Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol 70:7329–7341. doi:10.1128/AEM.70.12.7329-7341.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacRae J, Lavine I, McCaffery K, Ricupero K (2007) Isolation and characterization of NP4, arsenate-reducing Sulfurospirillum, from Maine groundwater. J Environ Eng ASCE 133:81–88. doi:10.1061/(ASCE)0733-9372(2007)133:1(81)

    Article  CAS  Google Scholar 

  • Maillard J et al (2011) Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation. doi:10.1007/s10532-011-9454-4

    PubMed  Google Scholar 

  • Mamais D et al (2007) Optimization of nitrogen removal and start-up of Psyttalia sewage treatment works. Environ Technol 28:129–136. doi:10.1080/09593332808618779

    Article  CAS  PubMed  Google Scholar 

  • Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47:6023–6029. doi:10.1021/es400341b

    Article  CAS  PubMed  Google Scholar 

  • Marteinsson VT et al (2013) Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J 7:427–437. doi:10.1038/ismej.2012.97

    Article  PubMed  Google Scholar 

  • Meszaros E, Sipos R, Pal R, Romsics C, Marialigeti K (2013) Stimulation of trichloroethene biodegradation in anaerobic three-phase microcosms. Int Biodeterior Biodegrad 84:126–133. doi:10.1016/j.ibiod.2012.08.006

    Article  CAS  Google Scholar 

  • Middeldorp P et al (1998) Stimulation of reductive dechlorination for in situ bioremediation of a soil contaminated with chlorinated ethenes. Water Sci Technol 37:105–110. doi:10.1016/S0273-1223(98)00240-6

    Article  CAS  Google Scholar 

  • Miller E, Wohlfarth G, Diekert G (1996) Studies on tetrachloroethene respiration in Dehalospirillum multivorans. Arch Microbiol 166:379–387. doi:10.1007/BF01682983

    Article  CAS  PubMed  Google Scholar 

  • Neumann A, Scholz-Muramatsu H, Diekert G (1994) Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol 162:295–301

    Article  CAS  PubMed  Google Scholar 

  • Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180:4140–4145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann A, Seibert A, Trescher T, Reinhardt S, Wohlfarth G, Diekert G (2002) Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. Arch Microbiol 177:420–426. doi:10.1007/s00203-002-0409-3

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS et al (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panagiotakis I, Mamais D, Pantazidou M, Rossetti S, Aulenta F, Tandoi V (2014) Predominance of Dehalococcoides in the presence of different sulfate concentrations. Water Air Soil Pollut 225:1–14. doi:10.1007/s11270-013-1785-9

    Article  CAS  Google Scholar 

  • Pietari J (2002) Characterization of tetrachloroethene dechlorinating cultures and isolation of a novel tetrachloroethene to cis-1,2-dichloroethene halorespiring bacterium. University of Washington, Washington

    Google Scholar 

  • Regeard C, Maillard J, Holliger C (2004) Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Methods 56:107–118

    Article  CAS  PubMed  Google Scholar 

  • Ross DE, Marshall CW, May HD, Norman RS (2015) Draft genome sequence of Sulfurospirillum sp. strain MES, reconstructed from the metagenome of a microbial electrosynthesis system. Genome Announc 3(1):e01336-14. doi:10.1128/genomeA.01336-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossetti S, Aulenta F, Majone M, Crocetti G, Tandoi V (2008) Structure analysis and performance of a microbial community from a contaminated aquifer involved in the complete reductive dechlorination of 1,1,2,2-tetrachloroethane to ethene. Biotechnol Bioeng 100(2):240–249. doi:10.1002/bit.21776

    Article  CAS  PubMed  Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Dieker G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56. doi:10.1007/BF00262203

    Article  CAS  Google Scholar 

  • Schumacher W, Kroneck P (1992) Anaerobic energy metabolism of the sulfur-reducing bacterium “Spirillum” 5175 during dissimilatory nitrate reduction to ammonia. Arch Microbiol 157:464–470. doi:10.1007/BF00249106

    Article  CAS  Google Scholar 

  • Schumacher W, Kroneck P, Pfennig N (1992) Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Arch Microbiol 158:287–293. doi:10.1007/BF00245247

    Article  CAS  Google Scholar 

  • Sercu B et al (2013) The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents. Microb Ecol 65:39–49. doi:10.1007/s00248-012-0092-0

    Article  CAS  PubMed  Google Scholar 

  • Shartau SL et al (2010) Ammonium concentrations in produced waters from a mesothermic oil field subjected to nitrate injection decrease through formation of denitrifying biomass and anammox activity. Appl Environ Microbiol 76:4977–4987. doi:10.1128/AEM.00596-10

    Article  CAS  PubMed  Google Scholar 

  • Siebert A, Neumann A, Schubert T, Diekert G (2002) A non-dechlorinating strain of Dehalospirillum multivorans: evidence for a key role of the corrinoid cofactor in the synthesis of an active tetrachloroethene dehalogenase. Arch Microbiol 178:443–449. doi:10.1007/s00203-002-0473-8

    Article  CAS  PubMed  Google Scholar 

  • Sikorski J et al (2010) Complete genome sequence of Sulfurospirillum deleyianum type strain (5175). Stand Genomic Sci 2:149–157. doi:10.4056/sigs.671209

    Article  PubMed  PubMed Central  Google Scholar 

  • Soboh B, Linder D, Hedderich R (2002) Purification and catalytic properties of a CO-oxidizing: H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem 269:5712–5721 3282 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sorokin D, Tourova T, Muyzer G (2013) Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp nov., and Sulfurospirillum alkalitolerans sp nov. Extremophiles 17:535–543. doi:10.1007/s00792-013-0538-4

    Article  CAS  PubMed  Google Scholar 

  • Srinivas TN et al (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15:673–690. doi:10.1007/s00792-011-0398-8

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Gugliuzza T, Blum JS, Oremland R, Murillo FM (1997) Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3. Arch Microbiol 167:1–5

    Article  CAS  PubMed  Google Scholar 

  • Stolz J, Ellis D, Blum J, Ahmann D, Lovley D, Oremland R (1999) Sulfurospirillum barnesii sp nov and Sulfurospirillum arsenophilum sp nov., new members of the Sulfurospirillum clade of the epsilon proteobacteria. Int J Syst Bacteriol 49:1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Straub KL, Schink B (2004) Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl Environ Microbiol 70:5744–5749. doi:10.1128/AEM.70.10.5744-5749.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki D, Li Z, Cui X, Zhang C, Katayama A (2014) Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int J Syst Evol Microbiol 64:3081–3086. doi:10.1099/ijs.0.064360-0

    Article  CAS  PubMed  Google Scholar 

  • Takai K et al (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282. doi:10.1007/s00792-004-0386-3

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Foght J (2014) Draft genome sequences of campylobacterales (epsilonproteobacteria) obtained from methanogenic oil sands tailings pond metagenomes. Genome Announc 2(5):e01034-14. doi:10.1128/genomeA.01034-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomaras J, Sahl JW, Siegrist RL, Spear JR (2009) Microbial diversity of septic tank effluent and a soil biomat. Appl Environ Microbiol 75:3348–3351. doi:10.1128/AEM.00560-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Zaan B, de Weert J, Rijnaarts H, de Vos WM, Smidt H, Gerritse J (2009) Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. Water Res 43:3207–3216. doi:10.1016/j.watres.2009.04.042

    Article  PubMed  Google Scholar 

  • von Wintzingerode F, Schlötelburg C, Hauck R, Hegemann W, Göbel UB (2001) Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane. FEMS Microbiol Ecol 35:189–196

    Article  Google Scholar 

  • Wolfe RS, Penning N (1977) Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33:427–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Schilhabel A, Bartram S, Boland W, Diekert G (2010) Reductive dehalogenation of brominated ethenes by Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S. Environ Microbiol 12:501–509. doi:10.1111/j.1462-2920.2009.02093.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom 10:78. doi:10.1186/1471-2164-10-78

    Article  Google Scholar 

  • Zhang C, Suzuki D, Li Z, Ye L, Katayama A (2012) Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. J Biosci Bioeng 114:512–517. doi:10.1016/j.jbiosc.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li Z, Suzuki D, Ye L, Yoshida N, Katayama A (2013) A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A. Chemosphere 92:1343–1348. doi:10.1016/j.chemosphere.2013.05.051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG), Research Unit FOR 1530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Goris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goris, T., Diekert, G. (2016). The Genus Sulfurospirillum . In: Adrian, L., Löffler, F. (eds) Organohalide-Respiring Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49875-0_10

Download citation

Publish with us

Policies and ethics