Advertisement

The Genus Sulfurospirillum

  • Tobias GorisEmail author
  • Gabriele Diekert

Abstract

The only organohalide-respiring Epsilonproteobacteria (ε-proteobacteria) described so far are found in the genus Sulfurospirillum . This genus consists of versatile, often microaerophilic bacteria, growing with many different growth substrates. Only a few of these organisms use halogenated compounds, mainly chlorinated ethenes, as electron acceptors. Organohalide respiration was extensively studied in Sulfurospirillum multivorans, but seems to be similar in other reductively dehalogenating Sulfurospirilla like Sulfurospirillum halorespirans. While most Sulfurospirillum species are unable to utilize organohalides as electron acceptors, many of them grow with other toxic substrates such as arsenate or selenate. Other typical electron acceptors are nitrate and sulfur compounds. Electron donors used are pyruvate, hydrogen and formate. The anaerobic respiratory chains of Sulfurospirillum spp. involve most likely menaquinones and cytochromes for most electron donor/acceptor combinations. The growth substrate range which includes many toxic compounds enables many Sulfurospirillum species to thrive in polluted habitats, which is reflected by the presence of these bacteria in many contaminated sites. The genomes of Sulfurospirillum spp. are small to average in size (about 2.5–3 Mbp) and the genes necessary for organohalide respiration, if present, are clustered in one area, including corrinoid biosynthesis genes responsible for production of the unique norpseudovitamin B12. The gene inventory in this area differs from that of other organohalide-respiring bacterial classes in that a putative quinol dehydrogenase and other accessory proteins are encoded. This points to a respiratory chain differing from other organohalide-respiring bacteria.

Keywords

Electron Acceptor Draft Genome Chlorinate Ethene Reductive Dehalogenase Wolinella Succinogenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the German Research Foundation (DFG), Research Unit FOR 1530.

References

  1. Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nat 371:750. doi: 10.1038/371750a0 CrossRefGoogle Scholar
  2. Aranda C, Paredes J, Valenzuela C, Lam P, Guillou L (2010) 16S rRNA gene-based molecular analysis of mat-forming and accompanying bacteria covering organically-enriched marine sediments underlying a salmon farm in Southern Chile (Calbuco Island). Gayana 74:125–135Google Scholar
  3. Ballerstedt H et al (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol Ecol 47:223–234. doi: 10.1016/S0168-6496(03)00282-4 CrossRefPubMedGoogle Scholar
  4. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346:455–458. doi: 10.1126/science.1258118
  5. Bunge M et al (2007) Biological activity in a heavily organohalogen-contaminated river sediment. Environ Sci Pollut Res 14:3–10. doi: 10.1065/espr2006.03.298 CrossRefGoogle Scholar
  6. Buttet G, Holliger C, Maillard J (2013) Functional genotyping of Sulfurospirillum spp. in mixed cultures allowed the identification of a new tetrachloroethene reductive dehalogenase. Appl Environ Microbiol 79:6941–6947. doi: 10.1128/AEM.02312-13 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Campbell B, Jeanthon C, Kostka J, Luther G, Cary S (2001) Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572. doi: 10.1128/AEM.67.10.4566-4572.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen C, Ren N, Wang A, Yu Z, Lee DJ (2008) Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate, nitrate and lactate. Appl Microbiol Biotechnol 79:1071–1077. doi: 10.1007/s00253-008-1503-5 CrossRefPubMedGoogle Scholar
  9. Cichocka D, Nikolausz M, Haest PJ, Nijenhuis I (2010) Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld. FEMS Microbiol Ecol 72:297–310. doi: 10.1111/j.1574-6941.2010.00845.x CrossRefPubMedGoogle Scholar
  10. Dong Y, Butler EC, Philp RP, Krumholz LR (2011) Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene. Biodegradation 22:431–444. doi: 10.1007/s10532-010-9416-2 CrossRefPubMedGoogle Scholar
  11. Dugat-Bony E et al (2011) HiSpOD: probe design for functional DNA microarrays. Bioinformatics 27:641–648. doi: 10.1093/bioinformatics/btq712 CrossRefPubMedGoogle Scholar
  12. Duhamel M, Edwards EA (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 58:538–549. doi: 10.1111/j.1574-6941.2006.00191.x CrossRefPubMedGoogle Scholar
  13. Einsle O et al (1999) Structure of cytochrome c nitrite reductase. Nature 400:476–480. doi: 10.1038/22802 CrossRefPubMedGoogle Scholar
  14. Eisenbeis M, BauerKreisel P, ScholzMuramatsu H (1997) Studies on the dechlorination of tetrachloroethene to cis-1,2-dichloroethene by Dehalospirillum multivorans in biofilms. Water Sci Technol 36:191–198. doi: 10.1016/S0273-1223(97)00352-1 CrossRefGoogle Scholar
  15. Eisenmann E, Beuerle J, Sulger K, Kroneck P, Schumacher W (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch Microbiol 164:180–185. doi: 10.1007/BF02529969 CrossRefGoogle Scholar
  16. Finster K, Liesack W, Tindall B (1997) Sulfurospirillum arcachonense sp. nov., a new-microaerophilic sulfur-reducing bacterium. Int J Syst Bacteriol 47:1212–1217CrossRefPubMedGoogle Scholar
  17. Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gilbert MJ et al (2014) Occurrence, diversity, and host association of intestinal Campylobacter, Arcobacter, and Helicobacter in reptiles. PLoS ONE 9:e101599. doi: 10.1371/journal.pone.0101599 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goris T et al (2014) Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ Microbiol 16:3562–3580 doi: 10.1111/1462-2920.12589 PubMedGoogle Scholar
  20. Goris T et al (2015) Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Sci Rep 5:13794. doi: 10.1038/srep13794
  21. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443. doi: 10.1016/j.femsec.2005.05.007 CrossRefPubMedGoogle Scholar
  22. Grigoryan AA et al (2008) Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol 74:4324–4335. doi: 10.1128/AEM.00419-08 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heimann AC et al (2007) Hydrogen thresholds and steady-state concentrations associated with microbial arsenate respiration. Environ Sci Technol 41:2311–2317CrossRefPubMedGoogle Scholar
  24. Hery M, Gault A, Rowland H, Lear G, Polya D, Lloyd J (2008) Molecular and cultivation-dependent analysis of metal-reducing bacteria implicated in arsenic mobilisation in south-east asian aquifers. Appl Geochem 23:3215–3223. doi: 10.1016/j.apgeochem.2008.07.003 CrossRefGoogle Scholar
  25. Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652. doi: 10.1128/AEM.02332-06 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Prog 19:338–345. doi: 10.1021/bp020128f CrossRefPubMedGoogle Scholar
  27. Hubert CR et al (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404. doi: 10.1111/j.1462-2920.2011.02521.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hug LA et al (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368:20120322. doi: 10.1098/rstb.2012.0322 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (2005) Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria. J Bacteriol 187:3020–3027. doi: 10.1128/JB.187.9.3020-3027.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jensen A, Finster K (2005) Isolation and characterization of Sulfurospirillum carboxydovorans sp nov., a new microaerophilic carbon monoxide oxidizing epsilon proteobacterium. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 87:339–353. doi: 10.1007/s10482-004-6839-y CrossRefGoogle Scholar
  31. John M, Schmitz R, Westermann M, Richter W, Diekert G (2006) Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Arch Microbiol 186:99–106. doi: 10.1007/s00203-006-0125-5 CrossRefPubMedGoogle Scholar
  32. John M, Rubick R, Schmitz RP, Rakoczy J, Schubert T, Diekert G (2009) Retentive memory of bacteria: long-term regulation of dehalorespiration in Sulfurospirillum multivorans. J Bacteriol 191:1650–1655. doi: 10.1128/JB.00597-08 CrossRefPubMedGoogle Scholar
  33. Kaufhold T, Schmidt M, Cichocka D, Nikolausz M, Nijenhuis I (2013) Dehalogenation of diverse halogenated substrates by a highly enriched Dehalococcoides-containing culture derived from the contaminated mega-site in Bitterfeld. FEMS Microbiol Ecol 83:176–188. doi: 10.1111/j.1574-6941.2012.01462.x CrossRefPubMedGoogle Scholar
  34. Kern M, Simon J (2008) Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration. Mol Microbiol 69:1137–1152. doi: 10.1111/j.1365-2958.2008.06361.x CrossRefPubMedGoogle Scholar
  35. Keyser M, Britz T, Witthuhn R (2007) Fingerprinting and identification of bacteria present in UASB granules used to treat winery, brewery, distillery or peach-lye canning wastewater. S Afr Enol Vitic 28:69–79Google Scholar
  36. Kimoto H et al (2010) Cloning of a novel dehalogenase from environmental DNA. Biosci Biotechnol Biochem 74:1290–1292. doi: 10.1271/bbb.100027 CrossRefPubMedGoogle Scholar
  37. Kodama Y, Ha L, Watanabe K (2007) Sulfurospirillum cavolei sp nov, a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity. Int J Syst Evol Microbiol 57:827–831. doi: 10.1099/ijs.0.64823-0 CrossRefPubMedGoogle Scholar
  38. Kräutler B et al (2003) The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B(12), a new type of a natural corrinoid. Helv Chim Acta 86:3698–3716Google Scholar
  39. Laanbroek H, Kingma W, Veldkamp H (1977) Isolation of an aspartate-fermenting, free-living Campylobacter species. FEMS Microbiol Lett 1:99–102. doi: 10.1016/0378-1097(77)90010-6 CrossRefGoogle Scholar
  40. Lazaro C, Vich D, Hirasawa J, Varesche M (2012) Hydrogen production and consumption of organic acids by a phototrophic microbial consortium. Int J Hydrogen Energy 37:11691–11700. doi: 10.1016/j.ijhydene.2012.05.088 CrossRefGoogle Scholar
  41. Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048. doi: 10.1128/AEM.01654-06 CrossRefPubMedGoogle Scholar
  42. Li YH, Zhu JN, Zhai ZH, Zhang Q (2010) Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol Lett 309:84–93. doi: 10.1111/j.1574-6968.2010.02015.x PubMedGoogle Scholar
  43. Li YH, Liu QF, Liu Y, Zhu JN, Zhang Q (2011) Endophytic bacterial diversity in roots of Typha angustifolia L. in the constructed Beijing Cuihu Wetland (China). Res Microbiol 162:124–131. doi: 10.1016/j.resmic.2010.09.021 CrossRefPubMedGoogle Scholar
  44. Li Z, Suzuki D, Zhang C, Yoshida N, Yang S, Katayama A (2013) Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol. J Biosci Bioeng 116:602–609. doi: 10.1016/j.jbiosc.2013.05.009 CrossRefPubMedGoogle Scholar
  45. Li Z et al (2014) Anaerobic 4-chlorophenol mineralization in an enriched culture under iron-reducing conditions. J Biosci Bioeng. doi: 10.1016/j.jbiosc.2014.04.007 Google Scholar
  46. Liu L, Tsyganova O, Lee D, Chang J, Wang A, Ren N (2013) Double-chamber microbial fuel cells started up under room and low temperatures. Int J Hydrogen Energy 38:15574–15579. doi: 10.1016/j.ijhydene.2013.02.090 CrossRefGoogle Scholar
  47. Lohmayer R, Kappler A, Lösekann-Behrens T, Planer-Friedrich B (2014) Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl Environ Microbiol 80:3141–3149. doi: 10.1128/AEM.04220-13 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Luijten ML et al (2003) Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793CrossRefPubMedGoogle Scholar
  49. Luijten M et al (2004a) Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. FEMS Microbiol Ecol 49:145–150. doi: 10.1016/j.femsec.2004.01.015 CrossRefPubMedGoogle Scholar
  50. Luijten ML, Roelofsen W, Langenhoff AA, Schraa G, Stams AJ (2004b) Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at a site polluted with chlorinated ethenes. Environ Microbiol 6:646–650. doi: 10.1111/j.1462-2920.2004.00608.x CrossRefPubMedGoogle Scholar
  51. Macbeth TW, Cummings DE, Spring S, Petzke LM, Sorenson KS (2004) Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol 70:7329–7341. doi: 10.1128/AEM.70.12.7329-7341.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  52. MacRae J, Lavine I, McCaffery K, Ricupero K (2007) Isolation and characterization of NP4, arsenate-reducing Sulfurospirillum, from Maine groundwater. J Environ Eng ASCE 133:81–88. doi: 10.1061/(ASCE)0733-9372(2007)133:1(81) CrossRefGoogle Scholar
  53. Maillard J et al (2011) Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation. doi: 10.1007/s10532-011-9454-4 PubMedGoogle Scholar
  54. Mamais D et al (2007) Optimization of nitrogen removal and start-up of Psyttalia sewage treatment works. Environ Technol 28:129–136. doi: 10.1080/09593332808618779 CrossRefPubMedGoogle Scholar
  55. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47:6023–6029. doi: 10.1021/es400341b CrossRefPubMedGoogle Scholar
  56. Marteinsson VT et al (2013) Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J 7:427–437. doi: 10.1038/ismej.2012.97 CrossRefPubMedGoogle Scholar
  57. Meszaros E, Sipos R, Pal R, Romsics C, Marialigeti K (2013) Stimulation of trichloroethene biodegradation in anaerobic three-phase microcosms. Int Biodeterior Biodegrad 84:126–133. doi: 10.1016/j.ibiod.2012.08.006 CrossRefGoogle Scholar
  58. Middeldorp P et al (1998) Stimulation of reductive dechlorination for in situ bioremediation of a soil contaminated with chlorinated ethenes. Water Sci Technol 37:105–110. doi: 10.1016/S0273-1223(98)00240-6 CrossRefGoogle Scholar
  59. Miller E, Wohlfarth G, Diekert G (1996) Studies on tetrachloroethene respiration in Dehalospirillum multivorans. Arch Microbiol 166:379–387. doi: 10.1007/BF01682983 CrossRefPubMedGoogle Scholar
  60. Neumann A, Scholz-Muramatsu H, Diekert G (1994) Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol 162:295–301CrossRefPubMedGoogle Scholar
  61. Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180:4140–4145PubMedPubMedCentralGoogle Scholar
  62. Neumann A, Seibert A, Trescher T, Reinhardt S, Wohlfarth G, Diekert G (2002) Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. Arch Microbiol 177:420–426. doi: 10.1007/s00203-002-0409-3 CrossRefPubMedGoogle Scholar
  63. Oremland RS et al (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–3019PubMedPubMedCentralGoogle Scholar
  64. Panagiotakis I, Mamais D, Pantazidou M, Rossetti S, Aulenta F, Tandoi V (2014) Predominance of Dehalococcoides in the presence of different sulfate concentrations. Water Air Soil Pollut 225:1–14. doi: 10.1007/s11270-013-1785-9 CrossRefGoogle Scholar
  65. Pietari J (2002) Characterization of tetrachloroethene dechlorinating cultures and isolation of a novel tetrachloroethene to cis-1,2-dichloroethene halorespiring bacterium. University of Washington, WashingtonGoogle Scholar
  66. Regeard C, Maillard J, Holliger C (2004) Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Methods 56:107–118CrossRefPubMedGoogle Scholar
  67. Ross DE, Marshall CW, May HD, Norman RS (2015) Draft genome sequence of Sulfurospirillum sp. strain MES, reconstructed from the metagenome of a microbial electrosynthesis system. Genome Announc 3(1):e01336-14. doi: 10.1128/genomeA.01336-14 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rossetti S, Aulenta F, Majone M, Crocetti G, Tandoi V (2008) Structure analysis and performance of a microbial community from a contaminated aquifer involved in the complete reductive dechlorination of 1,1,2,2-tetrachloroethane to ethene. Biotechnol Bioeng 100(2):240–249. doi: 10.1002/bit.21776 CrossRefPubMedGoogle Scholar
  69. Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Dieker G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56. doi: 10.1007/BF00262203 CrossRefGoogle Scholar
  70. Schumacher W, Kroneck P (1992) Anaerobic energy metabolism of the sulfur-reducing bacterium “Spirillum” 5175 during dissimilatory nitrate reduction to ammonia. Arch Microbiol 157:464–470. doi: 10.1007/BF00249106 CrossRefGoogle Scholar
  71. Schumacher W, Kroneck P, Pfennig N (1992) Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Arch Microbiol 158:287–293. doi: 10.1007/BF00245247 CrossRefGoogle Scholar
  72. Sercu B et al (2013) The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents. Microb Ecol 65:39–49. doi: 10.1007/s00248-012-0092-0 CrossRefPubMedGoogle Scholar
  73. Shartau SL et al (2010) Ammonium concentrations in produced waters from a mesothermic oil field subjected to nitrate injection decrease through formation of denitrifying biomass and anammox activity. Appl Environ Microbiol 76:4977–4987. doi: 10.1128/AEM.00596-10 CrossRefPubMedGoogle Scholar
  74. Siebert A, Neumann A, Schubert T, Diekert G (2002) A non-dechlorinating strain of Dehalospirillum multivorans: evidence for a key role of the corrinoid cofactor in the synthesis of an active tetrachloroethene dehalogenase. Arch Microbiol 178:443–449. doi: 10.1007/s00203-002-0473-8 CrossRefPubMedGoogle Scholar
  75. Sikorski J et al (2010) Complete genome sequence of Sulfurospirillum deleyianum type strain (5175). Stand Genomic Sci 2:149–157. doi: 10.4056/sigs.671209 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Soboh B, Linder D, Hedderich R (2002) Purification and catalytic properties of a CO-oxidizing: H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem 269:5712–5721 3282 [pii]CrossRefPubMedGoogle Scholar
  77. Sorokin D, Tourova T, Muyzer G (2013) Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp nov., and Sulfurospirillum alkalitolerans sp nov. Extremophiles 17:535–543. doi: 10.1007/s00792-013-0538-4 CrossRefPubMedGoogle Scholar
  78. Srinivas TN et al (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15:673–690. doi: 10.1007/s00792-011-0398-8 CrossRefPubMedGoogle Scholar
  79. Stolz JF, Gugliuzza T, Blum JS, Oremland R, Murillo FM (1997) Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3. Arch Microbiol 167:1–5CrossRefPubMedGoogle Scholar
  80. Stolz J, Ellis D, Blum J, Ahmann D, Lovley D, Oremland R (1999) Sulfurospirillum barnesii sp nov and Sulfurospirillum arsenophilum sp nov., new members of the Sulfurospirillum clade of the epsilon proteobacteria. Int J Syst Bacteriol 49:1177–1180CrossRefPubMedGoogle Scholar
  81. Straub KL, Schink B (2004) Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl Environ Microbiol 70:5744–5749. doi: 10.1128/AEM.70.10.5744-5749.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Suzuki D, Li Z, Cui X, Zhang C, Katayama A (2014) Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int J Syst Evol Microbiol 64:3081–3086. doi: 10.1099/ijs.0.064360-0 CrossRefPubMedGoogle Scholar
  83. Takai K et al (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282. doi: 10.1007/s00792-004-0386-3 CrossRefPubMedGoogle Scholar
  84. Tan B, Foght J (2014) Draft genome sequences of campylobacterales (epsilonproteobacteria) obtained from methanogenic oil sands tailings pond metagenomes. Genome Announc 2(5):e01034-14. doi: 10.1128/genomeA.01034-14 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tomaras J, Sahl JW, Siegrist RL, Spear JR (2009) Microbial diversity of septic tank effluent and a soil biomat. Appl Environ Microbiol 75:3348–3351. doi: 10.1128/AEM.00560-08 CrossRefPubMedPubMedCentralGoogle Scholar
  86. van der Zaan B, de Weert J, Rijnaarts H, de Vos WM, Smidt H, Gerritse J (2009) Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. Water Res 43:3207–3216. doi: 10.1016/j.watres.2009.04.042 CrossRefPubMedGoogle Scholar
  87. von Wintzingerode F, Schlötelburg C, Hauck R, Hegemann W, Göbel UB (2001) Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane. FEMS Microbiol Ecol 35:189–196CrossRefGoogle Scholar
  88. Wolfe RS, Penning N (1977) Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33:427–433PubMedPubMedCentralGoogle Scholar
  89. Ye L, Schilhabel A, Bartram S, Boland W, Diekert G (2010) Reductive dehalogenation of brominated ethenes by Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S. Environ Microbiol 12:501–509. doi: 10.1111/j.1462-2920.2009.02093.x CrossRefPubMedGoogle Scholar
  90. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom 10:78. doi: 10.1186/1471-2164-10-78 CrossRefGoogle Scholar
  91. Zhang C, Suzuki D, Li Z, Ye L, Katayama A (2012) Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. J Biosci Bioeng 114:512–517. doi: 10.1016/j.jbiosc.2012.05.025 CrossRefPubMedGoogle Scholar
  92. Zhang C, Li Z, Suzuki D, Ye L, Yoshida N, Katayama A (2013) A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A. Chemosphere 92:1343–1348. doi: 10.1016/j.chemosphere.2013.05.051 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Applied and Ecological MicrobiologyInstitute of Microbiology, Friedrich Schiller UniversityJenaGermany

Personalised recommendations