Advertisement

Organohalide-Respiring Bacteria—An Introduction

  • Lorenz AdrianEmail author
  • Frank E. LöfflerEmail author
Chapter

Abstract

Organohalide-respiring bacteria (OHRB) “breath” halogenated compounds for energy conservation. This fascinating process has received increasing attention over the last two decades revealing the physiological, biochemical, genomic, and ecological features of this taxonomically diverse bacterial group. The discovery of OHRB enabled successful bioremediation at sites impacted with toxic chlorinated compounds, and has drawn researchers with diverse science and engineering backgrounds to study this process. Chapters discussing fundamental and applied aspects of OHRB demonstrate a vibrant research field that will continue to spur scientific discovery and innovate practice.

Keywords

Terminal Electron Acceptor Reductive Dechlorination Reductive Dehalogenation Halogen Substituent Reductive Dehalogenases 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346(6208):455–458. doi: 10.1126/science.1258118 CrossRefPubMedGoogle Scholar
  2. Cooper M, Wagner A, Wondrousch D, Sonntag F, Sonnabend A, Brehm M, Schüürmann G, Adrian L (2015) Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modelling. Environ Sci Technol 49(10):6018–6028. doi: 10.1021/acs.est.5b00303 CrossRefPubMedGoogle Scholar
  3. DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30. doi: 10.1007/BF00249173 CrossRefGoogle Scholar
  4. Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144–2151PubMedPubMedCentralGoogle Scholar
  5. Holliger C, Schraa G, Stams AJM, Zehnder AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59:2991–2997PubMedPubMedCentralGoogle Scholar
  6. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368(1616):20120322. doi: 10.1098/rstb.2012.0322 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Mac Nelly A, Kai M, Svatoš A, Diekert G, Schubert T (2014) Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. Appl Environ Microbiol 80(14):4313–4322. doi: 10.1128/aem.00881-14 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. doi: 10.1126/science.276.5318.1568 CrossRefPubMedGoogle Scholar
  9. Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann AM (2015) Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J Am Chem Soc 137(10):3525–3532. doi: 10.1021/ja511653d CrossRefPubMedPubMedCentralGoogle Scholar
  10. Payne KAP, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SEJ, Leys D (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517(7535):513–516. doi: 10.1038/nature13901 CrossRefPubMedGoogle Scholar
  11. Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1119. doi: 10.1126/science.218.4577.1115 CrossRefPubMedGoogle Scholar
  12. Yan J, Simsir B, Farmer AT, Bi M, Yang Y, Campagna SR, Löffler FE (2015) The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi. ISME J. doi: 10.1038/ismej.2015.197 PubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department Isotope BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  2. 2.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.University of Tennessee and Oak Ridge National Laboratory (UT-ORNL), Joint Institute for Biological Sciences (JIBS)Oak RidgeUSA
  4. 4.Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations