Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 386))

  • 1142 Accesses

Abstract

Singular-Value-QR Decomposition (SVD-QR) is a new data reduction algorithm, which can be applied to compress high data redundancy in wireless communication system and radar system. It selects the most important part of the original data which can represent other information as well. Based on the analysis of synthetic aperture radar (SAR) history data in slow-time domain, we prove that it satisfies the condition of SVD-QR approach. In addition, backprojection image reconstruction algorithm is also presented in this work, which is more efficient than matched filter method. Simulations are performed according to the Gotcha Volumetric SAR Data Set, which is collected in a real 2D/3D scenario. From the simulation results, the effectiveness of this new algorithm is verified and the compression ratio can be achieved by 2:5. Comparing with the uniform down sampling method, SVD-QR algorithm can save about 60 % data and have a better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aly Z, Bonn FJ, Magagi R (2007) Analysis of the backscattering coefficient of salt-affected soils using modeling and RADARSAT-1 SAR data. IEEE Trans Geosci Remote Sens 45(2):332–341

    Google Scholar 

  2. Srivastava HS, Patel P, Sharma Y, Navalgund RR (2009) Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data. IEEE Tran Geosci Remote Sens 47(8):2528–2535

    Article  Google Scholar 

  3. Strodl K, Benz UC, Moreira A (1994) Comparison of several algorithms for on-board SAR raw data reduction. In: International society for optics and photonics, satellite remote sensing

    Google Scholar 

  4. Baxter RA (1999) SAR image compression with the Gabor transform. IEEE Trans on Geosci Remote Sens 37(1):574–588

    Article  Google Scholar 

  5. Baraniuk R, Steeghsm P (2007) Compressive radar imaging. In: IEEE radar conference. Waltham, Massachusetts

    Google Scholar 

  6. Chen J, Liang Q, Paden J, Gogineni P (2012) Compressive sensing analysis of synthetic aperture radar raw data. In: IEEE international conference on communications (ICC)

    Google Scholar 

  7. Liang Q (2011) Compressive sensing for synthetic aperture radar in fast-time and slow-time domains. In: Asilomar conference on signals, systems and computers (ASILOMAR), pp 1479–1483

    Google Scholar 

  8. Liang Q (2010) Compressive sensing for radar sensor networks. In: IEEE global telecommunications conference. Miami, FL

    Google Scholar 

  9. Liang Q, Wang L (2005) Redundancy reduction in wireless sensor networks using SVD-QR. IEEE Conf Mil Commun 3:1857–1861

    Google Scholar 

  10. Liang J, Liang Q (2009) Channel selection in virtual MIMO wireless sensor networks. IEEE Trans Veh Technol 58(5):2249–2257

    Article  Google Scholar 

  11. Neo YL, Wong FH, Cumming IG (2008) Processing of azimuth-invariant bistatic SAR data using the range doppler algorithm. IEEE Trans Geosci Remote Sen 46(1):14–21

    Article  Google Scholar 

  12. Ribalta A (2011) Time-domain reconstruction algorithms for FMCW-SAR. IEEE Geosci Remote Sens Lett 8(3):396–400

    Article  Google Scholar 

  13. Bhattacharya S, Blumensath T, Mulgrew B, Davies M (2007) Fast encoding of synthetic aperture radar raw data using compressed sensing. In: IEEE/SP 14th workshop on statistical signal processing, pp 448–452

    Google Scholar 

  14. Gorham LeRoy A, Moore Linda J (2010) SAR image formation toolbox for MATLAB. In: International society for optics and photonics SPIE defense, security, and sensing

    Google Scholar 

  15. Yegulalp AF (1999) Fast backprojection algorithm for synthetic aperture radar. In: Proceedings 1999 IEEE radar conference, April 2022. Waltham, MA, p 6065

    Google Scholar 

  16. Perlovsky L, Ilin R, Deming R, Linnehan R, Lin F (2010) Moving target detection and characterization with circular SAR. In: IEEE radar conference, pp 661–666

    Google Scholar 

  17. Austin CD, Ertin E, Moses RL (2009) Sparse multipass 3D SAR imaging: applications to the GOTCHA data set. In: International society for optics and photonics SPIE defense, security, and sensing

    Google Scholar 

  18. Rigling BD, Moses RL (2005) Taylor expansion of the differential range for monostatic SAR. IEEE Trans Aerosp Electron Syst 41(1):60–64

    Google Scholar 

  19. McCorkle J, Nguyen L (1994) Focusing of dispersive targets using synthetic aperture radar, No. ARL-TR-305. Army Research Laboratory, Adelphi, MD

    Google Scholar 

  20. Soumekh M (1999) Synthetic aperture radar signal processing. A Wiley-Interscience publication, USA

    MATH  Google Scholar 

  21. Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press

    Google Scholar 

  22. Golub G (1965) Numerical methods for solving linear least squares problems. Numerische Mathematik 7(3):206–216

    Article  MathSciNet  MATH  Google Scholar 

  23. Casteel Jr CH, Gorham LA, Minardi MJ, Scarborough SM, Naidu KD, Majumder UK (2007) A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment. In: International Society for optics and photonics, defense and security symposium

    Google Scholar 

  24. Liang Q, Cheng X, Chen D (2014) Opportunistic sensing in wireless sensor networks: theory and application. IEEE Trans Comput 63(8):2002–2010

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, N., Liang, Q. (2016). Raw Data Reduction for Synthetic Aperture Based on SVD-QR. In: Liang, Q., Mu, J., Wang, W., Zhang, B. (eds) Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems. Lecture Notes in Electrical Engineering, vol 386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49831-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49831-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49829-3

  • Online ISBN: 978-3-662-49831-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics