Advertisement

The Foundations: Physics and Top-Down Causation

  • George EllisEmail author
Chapter
  • 1.3k Downloads
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

At the bottom level, what happens is based on physics: it enables the emergence of higher level entities, which then in turn act down on the lower level components.

Keywords

Early Universe Adaptive Selection Lower Level Variable High Level Variable Emergent Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115, 485–491 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Y. Aharonov, D. Rohrlich, Quantum Paradoxes (Wiley-VCH, Weinheim, 2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    D. Albert, Time and Chance (Harvard University Press, Harvard, 2003)Google Scholar
  4. 4.
    M. Alonso, E.J. Finn, Fundamental University Phyiscs III: Quantum and Statistical Physics (Addison Wesley, Reading, 1971)Google Scholar
  5. 5.
    P.W. Anderson, More is different. Science 177, 377 (1972). Reprinted in P W Anderson: A Career in Theoretical Physics (World Scientific, Singapore, 1994)Google Scholar
  6. 6.
    K. Ariga, T. Kunitake, Supramolecular Chemistry: Fundamentals and Applications (Springer, Berlin, 2006)Google Scholar
  7. 7.
    W.L.F. Armarego, C. Chai, Purification of Laboratory Chemicals (Butterworth, 2013)Google Scholar
  8. 8.
    P.W. Atkins, Physical Chemistry (Oxford University Press, Oxford, 1994)Google Scholar
  9. 9.
    G. Auletta, G. Ellis, L. Jaeger, Top-down causation: from a philosophical problem to a scientific research program. J. R. Soc. Interface 5, 1159–1172 (2008), arXiv:0710.4235
  10. 10.
    Y. Balashov, Resource letter AP-1: the anthropic principle. Am. J. Phys. 54, 1069 (1991)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Barbour, H. Pfister (eds.), Mach’s Principle: From Newton’s Bucket to Quantum Gravity (Birkhäuser, 1995)Google Scholar
  12. 12.
    J. Barrow, F. Tipler, The Cosmological Anthropic Principle (Oxford University Press, Oxford, 1984)Google Scholar
  13. 13.
    H. Batelaan, A. Tonomura, The Aharonov-Bohm effects: variations on a subtle theme. Phys. Today 62, 38–43 (2009)CrossRefGoogle Scholar
  14. 14.
    J.S. Bell, On the Einstein-Poldolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  15. 15.
    J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987)zbMATHGoogle Scholar
  16. 16.
    Y. Ben-Aryeh, Geometric phases and topological effects in quantum mechanics, in Quantum Mechanics, ed. by J.P. Groffe (Nova Science Publishers, 2012)Google Scholar
  17. 17.
    D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166–179 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables. II. Phys. Rev. 85, 180–193 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    H. Bondi, Cosmology (Cambridge University Press, Cambridge, 1960)zbMATHGoogle Scholar
  20. 20.
    R.N. Bracewell, The Fourier Transform and its Applications (McGraw Hill, New York, 1986)zbMATHGoogle Scholar
  21. 21.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Clarendon Press, Oxford, 2006)zbMATHGoogle Scholar
  22. 22.
    A.O. Caldeira, Caldeira–Leggett model. Scholarpedia article (2010)Google Scholar
  23. 23.
    N.A. Campbell, J.B. Reece, Biology (Benjamin Cummings, 2005)Google Scholar
  24. 24.
    S. Carroll, From Eternity to Here: The Quest for the Ultimate Arrow of Time (Dutton, New York, 2010)Google Scholar
  25. 25.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000)Google Scholar
  26. 26.
    R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. II (Wiley-Interscience, New York, 1962)zbMATHGoogle Scholar
  27. 27.
    D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (Dover, New York, 1984)Google Scholar
  28. 28.
    P.C.W. Davies, The Physics of Time Asymmetry (University of California Press, 1977)Google Scholar
  29. 29.
    P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958)zbMATHGoogle Scholar
  30. 30.
    S. Dodelson, Modern Cosmology (Academic Press, New York, 2003)Google Scholar
  31. 31.
    A. Durrant, Quantum Physics of Matter (Institute of Physics and The Open University, Bristol, 2000)zbMATHGoogle Scholar
  32. 32.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    G.F.R. Ellis, Relativistic cosmology, in General Relativity and Cosmology, Proceedings of the XLVII Enrico Fermi Summer School, ed. by R.K. Sachs (Academic Press, New York, 1971). Reprinted as GRG Golden Oldie, Gen. Relativ. Gravit. 41, 581–660 (2009)Google Scholar
  34. 34.
    G.F.R. Ellis, Cosmology and local physics. New Astron. Rev. 46, 645–658 (2002), arXiv:gr-qc/0102017 Google Scholar
  35. 35.
    G.F.R. Ellis, Physics in the real universe: time and spacetime. GRG 38, 1797–1824 (2006), arXiv:gr-qc/0605049 Google Scholar
  36. 36.
    G.F.R. Ellis, On the nature of causation in complex systems. Trans. R. Soc. South Africa 63, 69–84 (2008)CrossRefGoogle Scholar
  37. 37.
    G.F.R. Ellis, On the limits of quantum theory: contextuality and the quantum-classical cut. Ann. Phys. 327, 1890–1932 (2012), arXiv:1108.5261
  38. 38.
    G.F.R. Ellis, The arrow of time and the nature of spacetime. Stud. Hist. Philos. Modern Phys. 44, 242–262 (2013), arXiv:1302.7291
  39. 39.
    G.F.R. Ellis, The evolving block universe and the meshing together of times. Ann. N. Y. Acad. Sci. (2014), arXiv:1407.7243
  40. 40.
    G.F.R. Ellis, M. Bruni, Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D 40, 1804 (1989)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    G.F.R. Ellis, R. Goswami, Space time and the passage of time, in Springer Handbook of Spacetime, eds. by A. Ashtekar, V. Petkov (Springer, Heidelberg, 2014) Chap. 13, arXiv:1208.2611 Google Scholar
  42. 42.
    G.F.R. Ellis, R. Maartens, M.A.H. MacCallum, Relativistic Cosmology (Cambridge University Press, Cambridge, 2012)CrossRefzbMATHGoogle Scholar
  43. 43.
    G.F.R. Ellis, D. Noble, T. O’Connor, Top-down causation: an integrating theme within and across the sciences. J. R. Soc. Interface Focus 2, 1–3 (2011)CrossRefGoogle Scholar
  44. 44.
    G.F.R. Ellis, T. Rothman, Crystallizing block universes. Int. J. Theoret. Phys. 49, 988 (2010), arXiv:0912.0808
  45. 45.
    G.F.R. Ellis, D.W. Sciama, Global and non-global problems in cosmology, in General Relativity: Papers in Honour of J L Synge, ed. by L. O’Raifertaigh (Oxford University Press, Oxford, 1972), p. 35Google Scholar
  46. 46.
    H. Everett, Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    B. Falkenberg, M. Morrison (eds.), Why More Is Different: Philosophical Issues in Condensed Matter Physics and Complex Systems (Springer, Heidelberg, 2015)Google Scholar
  48. 48.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, ed. by D.F. Styer (Dover, New York, 1965)Google Scholar
  49. 49.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics I: Mainly Mechanics, Radiation, and Heat (Addison-Wesley, Reading, 1963)zbMATHGoogle Scholar
  50. 50.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics III: Quantum Mechanics (Addison-Wesley, Reading, 1965)zbMATHGoogle Scholar
  51. 51.
    P. Franche, R. Gwyn, B. Underwood, A. Wissanji, Attractive Lagrangians for non-canonical inflation. Phys. Rev. D 81, 123526 (2009), arXiv:0912.1857v3
  52. 52.
    P. Franche, R. Gwyn, B. Underwood, A. Wissanji, Initial conditions for non-canonical inflation. Phys. Rev. D 82, 063528 (2010), arXiv:1002.2639v1
  53. 53.
    M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex (Abacus, London, 1994)zbMATHGoogle Scholar
  54. 54.
    J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics: Emergence of Thermodynamic Behaviour Within Composite Quantum Systems (Springer, Heidelberg, 2004)CrossRefzbMATHGoogle Scholar
  55. 55.
    G. Greenstein, A.G. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett, Sudbury, 2006)Google Scholar
  56. 56.
    M.R. Haas, J. Schaye, A. Jeeson-Daniel, Disentangling galaxy environment and host halo mass. MNRAS 419, 2133 (2012), arXiv:1103.0547 Google Scholar
  57. 57.
    E.R. Harrison, Darkness at Night: A Riddle of the Universe (Harvard University Press, 1987)Google Scholar
  58. 58.
    S. Hartmann, Effective field theories, reductionism, and scientific explanation. Stud. Hist. Phil. Mod. Phys. 32, 267 (2001)Google Scholar
  59. 59.
    E. Hecht, Optics (McGraw Hill, Schaum, 1975)zbMATHGoogle Scholar
  60. 60.
    E.J. Henley, J.D. Seader, D.K. Roper, Separation Processes and Principles (Wiley Asia, 2011)Google Scholar
  61. 61.
    R.C. Henry, Diffuse background radiation. ApJ 516, L49 (1999), arXiv:astro-ph/9903294 Google Scholar
  62. 62.
    C.J. Isham, Lectures on Quantum Theory: Mathematical and Structural Foundations (Imperial College Press, London, 1995)CrossRefzbMATHGoogle Scholar
  63. 63.
    J.C. Jackson, Classical Electrodynamics (Wiley, New York, 1967)zbMATHGoogle Scholar
  64. 64.
    V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, J.-F. Roch, Experimental realization of Wheeler’s delayed-choice Gedanken experiment. Science 315, 5814 (2007), arXiv:quant-ph/0610241v1 Google Scholar
  65. 65.
    J.K. Jain, The composite fermion: a quantum particle and its quantum fluids. Phys. Today 39–45 (2000)Google Scholar
  66. 66.
    M. Kac, Can one hear the shape of a drum? Am. Math. Monthly 73, 4 Part 2 (1966)Google Scholar
  67. 67.
    S.A. Kauffman, The Origins of Order: Self-Organisation and Selection in Evolution (Oxford, New York, 1993)Google Scholar
  68. 68.
    Fachgruppe Physik, Universität zu Köln, Molecules in space (2013), http://www.astro.uni-koeln.de/cdms/molecules/
  69. 69.
    M. Kowalski et al., Improved cosmological constrains from new, old, and combined supernova data sets. Astrophys. J. 686, 749–778 (2008), http://iopscience.iop.org/article/10.1086/589937/pdf
  70. 70.
    K.S. Krane, Introductory Nuclear Physics (Wiley-VCH, 1987)Google Scholar
  71. 71.
    T. Lancaster, M. Pexton, Reduction and emergence in the fractional quantum Hall state. Stud. Hist Philos Modern Phys. 52 (Part B), 343–357 (2015)Google Scholar
  72. 72.
    K.J. Laidler, J.H. Meiser, B.C. Sanctuary, Physical Chemistry (Houghton Mifflin, 2002)Google Scholar
  73. 73.
    R.B. Laughlin, Fractional quantisation. Rev. Mod. Phys. 71, 863 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon: Entropy, Information, Computing (Adam Hilger, Bristol, 1990)Google Scholar
  75. 75.
    A.J. Leggett, Reflections on the quantum measurement paradox, in Quantum Implications: Essays in Honour of David Bohm, ed. by B.J. Hiley, F.D. Peat (Routledge, London, 1991), pp. 85–104Google Scholar
  76. 76.
    A.L. Lehninger, Bioenergetics (W A Benjamin, Menlo Park, 1973)Google Scholar
  77. 77.
    S.G. Lipson, H. Lipson, Optical Physics (Cambridge University Press, Cambridge, 1969)zbMATHGoogle Scholar
  78. 78.
    H. Lodish, A. Berk, S.L. Zipursky et al., Molecular Cell Biology (W H Freeman, New York, 2000), http://www.ncbi.nlm.nih.gov/books/NBK21473/
  79. 79.
    M. Longair, The physics of background radiation, in The Deep Universe: Saas-Fee Advanced Course 23, A.R. Sandage, R.G. Kron, M.S. Longair (Springer, 1993, 1995)Google Scholar
  80. 80.
    J. Martin, C. Ringeval, V. Vennin, Encyclopaedia Inflationaris (2013), arXiv:1303.3787
  81. 81.
    J. Martin, C. Ringeval, V. Vennin, How well can future CMB missions constrain cosmic inflation? (2014), arXiv:1407.4034 Google Scholar
  82. 82.
    B. Mashhoon, Gravito-electromagnetism: a brief review (2014), arXiv:1407.4034
  83. 83.
    G.J. Milburn, Schrödinger’s Machines: The Quantum Technology Reshaping Everyday Life (W H Freeman, New York, 1997)Google Scholar
  84. 84.
    M.A. Morrison, Understanding Quantum Physics: A User’s Manual (Prentice Hall International, Englewood Ciffs, 1990)Google Scholar
  85. 85.
    J.D. Murray, Mathematical Biology II (Springer, 2003)Google Scholar
  86. 86.
    L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, 1960)Google Scholar
  87. 87.
    L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics with Applications to Chemistry (Dover, Mineola, 1963)Google Scholar
  88. 88.
    R. Penrose, The Emperor’s New Mind: Concerning Computers, Minds and the Laws of Physics (Oxford University Press, Oxford, 1989)zbMATHGoogle Scholar
  89. 89.
    R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Jonathan Cape, London, 2004)zbMATHGoogle Scholar
  90. 90.
    R. Penrose, Cycles of Time (Vintage, 2011)Google Scholar
  91. 91.
    I. Percival, Schrödinger’s quantum cat. Nature 351, 357 (1991)ADSCrossRefGoogle Scholar
  92. 92.
    M. Peshkin, A. Tonomura, The Aharonov–Bohm Effect (Springer, 1989)Google Scholar
  93. 93.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus, Reading, 1995)Google Scholar
  94. 94.
    P. Peter, J.-P. Uzan, Primordial Cosmology (Oxford University Press, Oxford, 2013)Google Scholar
  95. 95.
    G.N. Price, S.T. Bannerman, E. Narevicius, M.G. Raizen, Single-photon atomic cooling. Laser Phys. 17, 1–4 (2007)CrossRefGoogle Scholar
  96. 96.
    G.N. Price, S.T. Bannerman, K. Viering, E. Narevicius, M.G. Raizen, Single-photon atomic cooling. Phys. Rev. Lett. 100, 093004 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    A. Rae, Quantum Physics: Illusion or Reality? (Cambridge University Press, Cambridge, 1994)Google Scholar
  98. 98.
    J.G. Roederer, Information and Its Role in Nature (Springer, Heidelberg, 2005)zbMATHGoogle Scholar
  99. 99.
    A. Ruschhaupt, J.G. Muga, M.G. Raizen, One-photon atomic cooling with an optical Maxwell demon valve. J. Phys. B: At. Mol. Opt. Phys. 39, 3833–3838 (2006)ADSCrossRefGoogle Scholar
  100. 100.
    J.J. Sakurai, Modern Quantum Mechanics (Addison Wesley Longman, Reading, 1994)Google Scholar
  101. 101.
    S. Saunders, J. Barrett, A. Kent, D. Wallace, Many Worlds: Everett, Quantum Theory and Reality (Oxford University Press, Oxford, 2011)zbMATHGoogle Scholar
  102. 102.
    G. Schaller, C. Emary, G. Kiesslich, T. Brandes, Probing the power of an electronic Maxwell demon (2011), arXiv:1106.4670v2
  103. 103.
    D.N. Schramm, M.S. Turner, Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys. 70, 303–318 (1998)Google Scholar
  104. 104.
    D.W. Sciama, The Unity of the Universe (Faber and Faber, 1959)Google Scholar
  105. 105.
    D.W. Sciama, The Physical Foundations of General Relativity (Doubleday, 1969)Google Scholar
  106. 106.
    C.R. Shalizi, J.P. Crutchfield, Computational mechanics: pattern and prediction, structure and simplicity. J. Stat. Phys. 104(3/4) (2001)Google Scholar
  107. 107.
    L. Susskind, A. Friedman, Quantum Mechanics: The Theoretical Minimum (Basic Books, 2014)Google Scholar
  108. 108.
    A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986)ADSCrossRefGoogle Scholar
  109. 109.
    K. Umashankar, Introduction to Engineering Electromagnetic Fields (World Scientific, Singapore, 1989)CrossRefGoogle Scholar
  110. 110.
    M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G.F. Snyder, D. Nelson, L. Hernquist, Introducing the Illustris project: simulating the coevolution of dark and visible matter in the universe (2014), arXiv:1405.2921v1 Google Scholar
  111. 111.
    J.D. Watson, Molecular Biology of the Gene (W A Benjamin, 1970)Google Scholar
  112. 112.
    S.W. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)Google Scholar
  113. 113.
    S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations (Cambridge University Press, Cambridge, 2005)Google Scholar
  114. 114.
    J.A. Wheeler, The ‘past’ and the ‘delayed-choice double-slit experiment’, in Mathematical Foundations of Quantum Theory, ed. by A.R. Marlow (Academic Press, New York, 1978), pp. 9–48Google Scholar
  115. 115.
    J.A. Wheeler, W.H. Zurek, Quantum Theory and Measurement (Princeton University Press, Princeton, 1983)CrossRefGoogle Scholar
  116. 116.
    F.L. Wilson, Fermi’s theory of \(\beta \)-decay. Am. J. Phys. 36, 1150–1160 (1968)ADSCrossRefGoogle Scholar
  117. 117.
    K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)Google Scholar
  118. 118.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)zbMATHGoogle Scholar
  119. 119.
    E. Witten, Three lectures on topological phases of matter (2015), arXiv:1510.07698
  120. 120.
    J. Wolfe, Violin acoustics: an introduction, http://www.phys.unsw.edu.au/jw/violintro.html
  121. 121.
    A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, Princeton, 2003)zbMATHGoogle Scholar
  122. 122.
    H.-D. Zeh, Quantum measurement and entropy, in Complexity, Entropy and the Physics of Information, ed. by W.H. Zurek (Addison Wesley, Redwood City, 1990), pp. 405–421Google Scholar
  123. 123.
    H.-D. Zeh, The Physical Basis of the Direction of Time (Springer, Berlin, 2007)zbMATHGoogle Scholar
  124. 124.
    J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979)zbMATHGoogle Scholar
  125. 125.
    W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003), http://lanl.arxiv.org/abs/quant-ph/0105127 Google Scholar
  126. 126.
    W.H. Zurek, Quantum Darwinism and invariance, in Science and Ultimate Reality: Quantum theory, Cosmology, and Complexity, ed. by J. Barrow, P.C.W. Davies, C. Harper (Cambridge University Press, Cambridge, 2004), pp. 121–134Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations