Room at the Bottom?

  • George EllisEmail author
Part of the The Frontiers Collection book series (FRONTCOLL)


The previous chapters have given numerous examples of top-down causation. They appear to make the case for existence of top-down causation unshakeable.


Causal Power Adaptive Selection High Level Structure Constituent Entity Lower Level Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Ambady, The mind in the world: culture and the brain. Assoc. Psychol. Sci. 24(5–6), 49 (2011)Google Scholar
  2. 2.
    P.W. Anderson, More is different. Science 177, 377 (1972). Reprinted in A Career in Theoretical Physics (World Scientific, Singapore, 1994)Google Scholar
  3. 3.
    P. Ball, The dawn of quantum biology. Nature 474, 272–274 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Bedau, P. Humphreys (eds.), Emergence: Contemporary Readings in Philosophy and Science (MIT Press, Cambridge, Mass, 2008)Google Scholar
  5. 5.
    S. Beer, Brain of the Firm (Wiley, Chichester, 1981)Google Scholar
  6. 6.
    P. Berger, T. Luckmann, The Social Construction of Reality: A Treatise in the Sociology of Knowledge (Anchor, New York, 1967)Google Scholar
  7. 7.
    J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)zbMATHGoogle Scholar
  8. 8.
    R.C. Bishop, Fluid convection, constraint and causation. Interface Focus 2, 4–12 (2012)CrossRefGoogle Scholar
  9. 9.
    G. Booch, Object Oriented Analysis and Design with Applications (Addison Wesley, New York, 1994)zbMATHGoogle Scholar
  10. 10.
    W. Brown, N. Murphy, Did My Neurons Make Me Do It? Philosophical and Neurobiological Perspectives on Moral Responsibility and Free Will (Oxford University Press, New York, 2007)Google Scholar
  11. 11.
    M. Buchanan, Going up, going down. Nat. Phys. 9, 63 (2013)CrossRefGoogle Scholar
  12. 12.
    F.M. Burnet, The Clonal Selection Theory of Acquired Immunity (Cambridge University Press, Cambridge, 1959)CrossRefGoogle Scholar
  13. 13.
    D.T. Campbell, Downward causation, in Studies in the Philosophy of Biology: Reduction and Related Problems, ed. by F.J. Ayala, T. Dobhzansky (University of California Press, Berkeley, 1974)Google Scholar
  14. 14.
    N.A. Campbell, J.B. Reece, Biology (Benjamin Cummings, San Francisco, 2005)Google Scholar
  15. 15.
    P. Candelas, G. Horowitz, A. Strominger, E. Witten, Vacuum configurations for superstrings. Nucl. Phys. B 258, 46–74 (1985)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Carroll, From Eternity to Here: The Quest for the Ultimate Arrow of Time (Dutton, New York, 2010)Google Scholar
  17. 17.
    J.M. Centrella, Resource letter GrW-1: Gravitational waves. Amer. J. Phys. 71, 520–525 (2003). arXiv:gr-qc/0211084 Google Scholar
  18. 18.
    T. Chouard, Breaking the protein rules: if dogma dictates that proteins need a structure to function, then why do so many of them live in a state of disorder? Nature 471, 151 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    P. Churchland, Plato’s Camera (MIT Press, Cambridge, Mass, 2012)Google Scholar
  20. 20.
    F. Crick, Astonishing Hypothesis: The Scientific Search for the Soul (Scribner, 1995)Google Scholar
  21. 21.
    S. Dodelson, Modern Cosmology (Academic Press, San Diego, 2003)Google Scholar
  22. 22.
    M. Donald, A Mind so Rare: The Evolution of Human Consciousness (W W Norton, 2001)Google Scholar
  23. 23.
    G.M. Edelman, Neural Darwinism: The Theory of Group Neuronal Selection (Oxford University Press, Oxford, 1989)Google Scholar
  24. 24.
    A. Eldar, M.B. Elowitz, Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    G.F.R. Ellis, Physics, complexity, and causality. Nature 435, 743 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    G.F.R. Ellis, On the limits of quantum theory: contextuality and the quantum–classical cut. Ann. Phys. 327, 1890–1932 (2001). Google Scholar
  27. 27.
    G.F.R. Ellis, Top-down causation and emergence: some comments on mechanisms. J. Roy. Soc. Interface Focus 2, 126–140 (2012)CrossRefGoogle Scholar
  28. 28.
    B. Falkenberg, M. Morrison (eds.), Why More Is Different: Philosophical Issues in Condensed Matter Physics and Complex Systems (Springer, Heidelberg, 2015)Google Scholar
  29. 29.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum Mechanics (Addison-Wesley, Reading, Mass, 1965)zbMATHGoogle Scholar
  30. 30.
    N.H. Fletcher, T.D. Rossing, The Physics of Musical Instruments (Springer, New York, 2010)zbMATHGoogle Scholar
  31. 31.
    C. Frith, Free will and top-down control in the brain, in Downward Causation and the Neurobiology of Free Will, ed. by N. Murphy, G.F.R. Ellis, T. O’Connor (Springer, Heidelberg, 2009)Google Scholar
  32. 32.
    J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics: Emergence of Thermodynamic Behaviour within Composite Quantum Systems (Springer, Heidelberg, 2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    J.W. Gerdemann, Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopathol. 6, 397–418 (1968)CrossRefGoogle Scholar
  34. 34.
    S.F. Gilbert, Developmental Biology (Sunderland Sinauer Associates, MA, 2006)Google Scholar
  35. 35.
    P.W. Glimcher, Indeterminacy in brain and behaviour. Annu. Rev. Psychol. 56, 25 (2005)CrossRefGoogle Scholar
  36. 36.
    P. Gray, Psychology (Worth Publishers, New York, 2011)Google Scholar
  37. 37.
    H.B. Grey, Chemical Bonds: An Introduction to Atomic and Molecular Structure (Benjamin Cummings, Menlo Park, 1973)Google Scholar
  38. 38.
    E.J. Henley, J.D. Seader, D.K. Roper, Separation Processes and Principles (Wiley, Asia, 2011)Google Scholar
  39. 39.
    G. Hinshaw, WMAP data put cosmic inflation to the test. Physics World 19, 16–19 (2006)Google Scholar
  40. 40.
    P.M. Hoffmann, Life’s Ratchets: How Molecular Machines Extract Order from Chaos (Basic Books, New York, 2012)Google Scholar
  41. 41.
    C.J. Isham, Lectures on Quantum Theory (Imperial College Press, London, 1995)CrossRefzbMATHGoogle Scholar
  42. 42.
    A. Juarrero, Dynamics in Action: Intentional Behaviour as a Complex System (MIT Press, Cambridge, Mass, 2002)Google Scholar
  43. 43.
    E. Kandel, The Age of Insight: The Quest to Understand the Unconscious in Art, Mind, and Brain, from Vienna 1900 to the Present. (Random House, 2012)Google Scholar
  44. 44.
    J. Khoury, A. Weltman, Chameleon cosmology. Phys. Rev. C 69, 044026 (2004). arXiv:astro-ph/0309411 ADSMathSciNetGoogle Scholar
  45. 45.
    C. Kittel and H. Kroemer, Thermal Physics (W H Freeman Company, 1980)Google Scholar
  46. 46.
    N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M li, G.-Y Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10–18 (2013)CrossRefGoogle Scholar
  47. 47.
    P. Landshoff, A. Metherall, Simple Quantum Physics (Cambridge University Press, Cambridge, 1979)Google Scholar
  48. 48.
    R.B. Laughlin, Fractional quantisation. Rev. Mod. Phys. 71, 863 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    S. Lloyd, A bit of quantum hanky-panky. Phys. World 26–29 (2011)Google Scholar
  50. 50.
    P.L. Luisi, Emergence in chemistry: Chemistry as the embodiment of emergence. Found. Chem. 4, 183–200 (2002)CrossRefGoogle Scholar
  51. 51.
    J.-P. Luminet, J. Weeks, A. Riazuelo, R. Lehoucq, J.-P. Uzan, Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature 425, 593 (2003). arXiv:astro-ph/0310253 ADSCrossRefGoogle Scholar
  52. 52.
    M.M. Mano, C.R. Kime, Logic and Computer Design Fundamentals (Pearson/Prentice Hall, 2008)Google Scholar
  53. 53.
    P. Menzies, The causal efficacy of mental states, In Physicalism and Mental Causation, ed. by S. Walter, H.-D Heckmann (Imprint Academic, 2003)Google Scholar
  54. 54.
    G.A. Miller, The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)CrossRefGoogle Scholar
  55. 55.
    J. Monod, Chance and Necessity: Essay on the Natural Philosophy of Modern Biology (Alfred A Knopf, New York, 1971)Google Scholar
  56. 56.
    J.L. Monteith, Principles of Environmental Physics (Edwin Arnold, London, 1973)Google Scholar
  57. 57.
    J.D. Murray, Mathematical Biology (Springer, 1990)Google Scholar
  58. 58.
    J.G. Nicholls, A.R. Martin, B.G. Wallace, P.A. Fuchs, From Neuron to Brain (Sunderland Sinauer, Mass, 2001)Google Scholar
  59. 59.
    D. Noble, The Music of Life (Oxford University Press, Oxford, 2006)Google Scholar
  60. 60.
    D. Noble, A theory of biological relativity: no privileged level of causation. Interface Focus 2, 55–64 (2012)CrossRefGoogle Scholar
  61. 61.
    Oxford Advanced Learner’s Dictionary (Oxford University Press, Oxford, 2000)Google Scholar
  62. 62.
    D. Papineau, The rise of physicalism, in Physicalism and Its Discontents, ed. by C. Gillet, B. Loewer (Cambridge University Press, Cambridge, 2001)Google Scholar
  63. 63.
    R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Knopf, New York, 2011)zbMATHGoogle Scholar
  64. 64.
    I. Percival, Schrödinger’s quantum cat. Nature 351, 357 (1991)ADSCrossRefGoogle Scholar
  65. 65.
    R. Phillips, S.R. Quale, The biological frontier of physics. Phys. Today 38–43 (2006)Google Scholar
  66. 66.
    M. Pigliucci, On the causal completeness of physics, Rationally Speaking blog (2013), Accessed 27 Feb 2013
  67. 67.
    D. Purves, W.T. Wojtach, R.B. Lotto, Understanding vision in wholly empirical terms (2011). PNAS Early Edition,
  68. 68.
    R. Rhoades, R. Pflanzer, Human Physiology (Saunders College Publishing, Fort Worth, 1989)Google Scholar
  69. 69.
    A. Riazuelo, J. Weeks, J.-P. Uzan, R. Lehoucq, J.-P. Luminet, Cosmic microwave background anisotropies in multi-connected flat spaces. Phys. Rev. D 69, 103518 (2004). arXiv:astro-ph/0311314 ADSCrossRefGoogle Scholar
  70. 70.
    J. Scalo, J.C. Wheeler, P. Williams, Intermittent jolts of galactic UV radiation: mutagenetic effects, in Frontiers of Life, 12ième Rencontres de Blois, ed. by L.M. Celnikier (2001). arXiv:0104209
  71. 71.
    A. Scott, Stairway to the Mind (Springer Verlag, New York, 1995)CrossRefGoogle Scholar
  72. 72.
    S. Seung, Connectome (Houghton Mifflin Harcourt, Boston, 2012)Google Scholar
  73. 73.
    H.A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, Mass, 1992)Google Scholar
  74. 74.
    R. Van Gulick, Who’s in charge here? And who’s doing all the work?, in Mental Causation ed. by J. Heil, A. Mele (Oxford University Press, Oxford, 1995)Google Scholar
  75. 75.
    A. Vicente, On the causal completeness of physics. Int. Stud. Philos. Sci. 20, 149–171 (2006)MathSciNetCrossRefGoogle Scholar
  76. 76.
    S. Zhang, Topological states of quantum matter. Physics 1, 6 (2008)CrossRefGoogle Scholar
  77. 77.
    J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979)zbMATHGoogle Scholar
  78. 78.
    W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). Google Scholar
  79. 79.
    W.H. Zurek, Quantum Darwinism and invariance, in Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, ed. by J. Barrow, P.C.W. Davies, C. Harper (Cambridge University Press, Cambridge, 2004), pp. 121–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations