Advertisement

The Basis of Complexity

  • George EllisEmail author
Chapter
  • 1.3k Downloads
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

This chapter looks at the basis of emergent complexity in physical systems, including life, as well as in logical systems.

Keywords

Equivalence Class Causal Power Lower Level Action High Level Structure Lower Level Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC, London, 2007)zbMATHGoogle Scholar
  3. 3.
    M. Alonso, E.J. Finn, Fundamental University Physics III: Quantum and Statistical Physics (Addison Wesley, Reading, Mass, 1971)Google Scholar
  4. 4.
    P.W. Anderson, More is different, Science 177, 377 (1972). Reprinted in A Career in Theoretical Physics (World Scientific, Singapore, 1994)Google Scholar
  5. 5.
    P.W. Atkins, Physical Chemistry (Oxford University Press, Oxford, 1994)Google Scholar
  6. 6.
    G. Auletta, G.F.R. Ellis, L. Jaeger, Top-down causation: from a philosophical problem to a scientific research program. J. Roy. Soc. Interface 5, 1159–1172 (2008). arXiv:0710.4235 CrossRefGoogle Scholar
  7. 7.
    A.-L. Barabási, Z.N. Oltvai, Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–114 (2004)CrossRefGoogle Scholar
  8. 8.
    M.A. Bedau, P. Humphreys (eds.), Emergence: Contemporary Readings in Philosophy and Science (MIT Press, Cambridge, Mass, 2008)Google Scholar
  9. 9.
    S. Beer, Brain of the Firm (Wiley, Chichester, 1981)Google Scholar
  10. 10.
    F. Bendetti, Placebo Effects (Oxford University Press, Oxford, 2014)CrossRefGoogle Scholar
  11. 11.
    J. Binney, S. Tremain, Galactic Dynamics (Princeton University Press, Princeton, 1987)zbMATHGoogle Scholar
  12. 12.
    C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford, 1999)zbMATHGoogle Scholar
  13. 13.
    R.C. Bishop, Fluid convection, constraint and causation. Interface Focus 2, 4–12 (2012)CrossRefGoogle Scholar
  14. 14.
    G. Booch, Object Oriented Analysis and Design with Applications (Addison Wesley, New York, 1994)zbMATHGoogle Scholar
  15. 15.
    R.N. Bracewell, The Fourier Transform and Its Applications (McGraw Hill, New York, 1986)zbMATHGoogle Scholar
  16. 16.
    W. Brown, N. Murphy, Did My Neurons Make Me Do It? Philosophical and Neurobiological Perspectives on Moral Responsibility and Free Will (Oxford University Press, New York, 2007)Google Scholar
  17. 17.
    T. Buyana, Molecular Physics (World Scientific, Singapore, 1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    G. Buzsáki, Rhythms of the Brain (Oxford University Press, Oxford, 1997)zbMATHGoogle Scholar
  19. 19.
    D.T. Campbell, Downward causation, in Studies in the Philosophy of Biology: Reduction and Related Problems, ed. by F.J. Ayala, T. Dobhzansky (University of California Press, Berkeley, 1974)Google Scholar
  20. 20.
    N.A. Campbell, J.B. Reece, Biology (Benjamin Cummings, San Francisco, 2005)Google Scholar
  21. 21.
    S. Carroll, From Eternity to Here: The Quest for the Ultimate Arrow of Time (Dutton, New York, 2010)Google Scholar
  22. 22.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000)Google Scholar
  23. 23.
    S. Chibbaro, L. Rondoni, A. Vulpiani, Reductionism, Emergence, and Levels of Reality (Springer, Heidelberg, 2014)CrossRefzbMATHGoogle Scholar
  24. 24.
    M. Chown, We Need to Talk about Kelvin (Faber and Faber, London, 2010)Google Scholar
  25. 25.
    S. Conway Morris, Life’s Solution: Inevitable Humans in a Lonely Universe (Cambridge University Press, Cambridge, 2005)Google Scholar
  26. 26.
    J. Copeland, The Essential Turing (Oxford University Press, Oxford, 2004)zbMATHGoogle Scholar
  27. 27.
    F. Crick, Astonishing Hypothesis: The Scientific Search for the Soul (Scribner, 1995)Google Scholar
  28. 28.
    J.P. Crutchfield, Between order and chaos. Nat. Phys. 8, 17–24 (2011)CrossRefGoogle Scholar
  29. 29.
    P.C.W. Davies, The Physics of Time Asymmetry (Surrey University Press, 1974)Google Scholar
  30. 30.
    R. Dawkins, Hierarchical organisation: a candidate principle for ethology, in Growing Points in Ethology, ed. by P.P.G. Bateson, R.A. Hinde (Cambridge University Press, Cambridge, 1976)Google Scholar
  31. 31.
    P. Dayan, L. Abbot, Theoretical Neuroscience: Computational and Mathematical Modelling of Neural Systems (MIT Press, Cambridge, Mass, 2001)zbMATHGoogle Scholar
  32. 32.
    T. Deacon, The Symbolic Species: The Co-Evolution of Language and the Human Brain (Penguin, London, 1997)Google Scholar
  33. 33.
    T. Deacon, Universal grammar and semiotic constraints, in Language Evolution, ed. by M. Christiansen, S. Kirby (Oxford University Press, Oxford, 2003), pp. 111–139Google Scholar
  34. 34.
    R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Basic Books, 2003)Google Scholar
  35. 35.
    P.A.M. Dirac, Proc. R. Soc. Lond. A 123, 714 (1929)Google Scholar
  36. 36.
    S. Dodelson, Modern Cosmology (Academic Press, San Diego, 2003)Google Scholar
  37. 37.
    A. Durrant, Quantum Physics of Matter (Institute of Physics and the Open University, Bristol, 2000)Google Scholar
  38. 38.
    A.S. Eddington, The Nature of the Physical World (MacMillan, London, 1928)zbMATHGoogle Scholar
  39. 39.
    G.F.R. Ellis, Cosmology and local physics. New Astron. Rev. 46, 645–658 (2002). http://arxiv.org/abs/gr-qc/0102017 Google Scholar
  40. 40.
    G.F.R. Ellis, True complexity and its associated ontology, in Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity, ed. by J.D. Barrow, P.C.W. Davies, C.L. Harper (Cambridge University Press, Cambridge, 2004) pp. 607–636Google Scholar
  41. 41.
    G.F.R. Ellis, The Universe Around Us: An Integrative View of Science and Cosmology (2004). http://www.mth.uct.ac.za/~ellis/cos0.html
  42. 42.
    G.F.R. Ellis, On the nature of causation in complex systems. Trans. Roy. Soc. S. Afr. 63, 69–84 (2008)CrossRefGoogle Scholar
  43. 43.
    G.F.R. Ellis, Top-down causation and emergence: some comments on mechanisms. J. Roy. Soc. Interface Focus 2, 126–140 (2012)CrossRefGoogle Scholar
  44. 44.
    G.F.R. Ellis, On the limits of quantum theory: contextuality and the quantum-classical cut. Ann. Phys. 327, 1890–1932 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    G.F.R. Ellis, D. Noble, T. O’Connor (eds.), Top-down causation: an integrating theme within and across the sciences? Roy. Soc. Interface Focus Special issue 2, 1–140 (2012)Google Scholar
  46. 46.
    G.F.R. Ellis, D.W. Sciama, Global and non-global problems in cosmology, in General Relativity (A Synge Festschrift), ed. by L. O’Raifeartaigh (Oxford University Press, Oxford, 1972) pp. 35–59Google Scholar
  47. 47.
    B. Falkenberg, M. Morrison (eds.), Why More Is Different: Philosophical Issues in Condensed Matter Physics and Complex Systems (Springer, Heidelberg, 2015)Google Scholar
  48. 48.
    R.L. Flood, E.R. Carson, Dealing with Complexity: An Introduction to the Theory and Application of Systems Science (Plenum Press, London, 1990)zbMATHGoogle Scholar
  49. 49.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Mainly Mechanics, Radiation, and Heat (Addison-Wesley, Reading, Mass, 1963)zbMATHGoogle Scholar
  50. 50.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: The Electromagnetic Field (Addison-Wesley, Reading, Mass, 1963)zbMATHGoogle Scholar
  51. 51.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum Mechanics (Addison-Wesley, Reading, Mass, 1965)zbMATHGoogle Scholar
  52. 52.
    C. Frith, Making up the Mind: How the Brain Creates Our Mental World (Blackwell, Malden, 2007)Google Scholar
  53. 53.
    M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex (Abacus, London, 1994)zbMATHGoogle Scholar
  54. 54.
    J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics: Emergence of Thermodynamic Behaviour Within Composite Quantum Systems (Springer, Heidelberg, 2004)CrossRefzbMATHGoogle Scholar
  55. 55.
    S. Gilbert, D. Epel, Ecological Developmental Biology (Sinauer, 2009)Google Scholar
  56. 56.
    M.B. Glauert, Principles of Dynamics (Routledge and Kegan Paul, London, 1960)zbMATHGoogle Scholar
  57. 57.
    P.W. Glimcher, Indeterminacy in brain and behaviour. Annu. Rev. Psychol. 56, 25 (2005)CrossRefGoogle Scholar
  58. 58.
    K.S. Goodman, Reading: A psycholinguistic guessing game, in Language and Literacy: The Selected Writings of Kenneth Goodman, vol. 1, ed. by F.V. Gollaschvol (Routledge and Kegan Paul, London, 1967) pp. 33–44Google Scholar
  59. 59.
    P. Gray, Psychology (Worth Publishers, New York, 2011)Google Scholar
  60. 60.
    S. Greenland, J. Pearle, Causal diagrams, Technical report R0332, in Encyclopaedia of Epidemiology (2006)Google Scholar
  61. 61.
    G. Greenstein, A.G. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett, Sudbury, Mass, 2006)Google Scholar
  62. 62.
    S. Hartmann, Effective field theories, reductionism and scientific explanation. Stud. Hist. Philos. Sci. Part B 32, 267–304 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology. Nature 402, Supplement C47–C52 (1999)Google Scholar
  64. 64.
    J. Hawkins, On Intelligence (Holt Paperbacks, New York, 2004)Google Scholar
  65. 65.
    P.M. Hoffmann, Life’s Ratchets: How Molecular Machines Extract Order from Chaos (Basic Books, New York, 2012)Google Scholar
  66. 66.
    J.H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, Mass, 1992)Google Scholar
  67. 67.
    D. Huron, Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, Cambridge, Mass, 2007)Google Scholar
  68. 68.
    J.C. Jackson, Classical Electrodynamics (Wiley, New York, 1967)zbMATHGoogle Scholar
  69. 69.
    L. Jaeger, E.R. Calkins, Downward causation by information control in micro-organisms. Interface Focus 2, 26–41 (2012)CrossRefGoogle Scholar
  70. 70.
    H. Jeong, S.P. Mason, A. Barabasi, Z.N. Oltvai Lethality and centrality in protein networks. Nature 411, 41–42 (2001). arXiv:cond-mat/0105306 Google Scholar
  71. 71.
    A. Juarrero, Dynamics in Action: Intentional Behaviour as a Complex System (MIT Press, Cambridge, Mass, 2002)Google Scholar
  72. 72.
    E.R. Kandel, The Age of Insight (Random House, 2012)Google Scholar
  73. 73.
    E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neuroscience (McGraw Hill, New York, 2000)Google Scholar
  74. 74.
    S.A. Kauffman, The Origins of Order: Self-Organisation and Selection in Evolution (Oxford, New York, 1993)Google Scholar
  75. 75.
    R. Lafore, Data Structures and Algorithms in Java (SAMS, 2002)Google Scholar
  76. 76.
    T. Lancaster, M. Pexton, Reduction and emergence in the fractional quantum Hall state. Stud. Hist. Philos. Mod. Phys. (2015)Google Scholar
  77. 77.
    R. Lapkiewicz, P. Li, C. Schaeff, N.K. Langford, S. Ramelow, M. Wiesniak, A. Zeilinger, Experimental non-classicality of an indivisible quantum system. Nature 474, 490 (2011) arXiv:1106.4481v1 Google Scholar
  78. 78.
    R.B. Laughlin, Fractional quantisation. Rev. Mod. Phys. 71, 863 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    D.J. Levitin, This Is Your Brain on Music: The Science of a Human Obsession (Plume, London, 2007)Google Scholar
  80. 80.
    P.L. Luisi, Emergence in chemistry: chemistry as the embodiment of emergence. Found. Chem. 4, 183–200 (2002)CrossRefGoogle Scholar
  81. 81.
    J. MacCormack, 9 Algorithms that Changed the Future: The Ingenious Ideas that Drive Today’s Computers (Princeton University Press, Princeton, 2012)Google Scholar
  82. 82.
    M.M. Mano, C.R. Kime, Logic and Computer Design Fundamentals (Pearson/Prentice Hall, 2008)Google Scholar
  83. 83.
    M Martìnez, A. Moya, Natural selection and multi-level causation. Philos. Theo. Biol. 3 (2011). http://hdl.handle.net/2027/spo.6959004.0003.002
  84. 84.
    G. McGhee, Convergent Evolution: Limited Forms Most Beautiful (MIT Press, Cambridge, Mass, 2011)CrossRefGoogle Scholar
  85. 85.
    B. McLaughlin, K. Bennett, Supervenience, in The Stanford Encyclopedia of Philosophy (Winter 2011 edition), ed. by E.N. Zalta (2011). http://plato.stanford.edu/archives/win2011/entries/supervenience/
  86. 86.
    P. Menzies, The causal efficacy of mental states, in Physicalism and Mental Causation, ed. by S. Walter, H.-D. Heckmann (Imprint Academic, 2003)Google Scholar
  87. 87.
    E. Morsella, M. Lanska, C.C. Berger, A. Gazzaley, Indirect cognitive control through top-down activation of perceptual symbols. Eur. J. Soc. Psychol. 39, 1173–1177 (2009)CrossRefGoogle Scholar
  88. 88.
    M. Newman, A.-L. Barabási, D.J. Watts, The Structure and Dynamics of Networks (Princeton Unversity Press, Princeton, 2006)zbMATHGoogle Scholar
  89. 89.
    S.A. Newman, What’s new: a review of the origins of evolutionary innovations by Andreas Wegner. Philos. Theor. Biol. 4, e304 (2012)Google Scholar
  90. 90.
    D. Noble, The Music of Life (Oxford University Press, Oxford, 2006)Google Scholar
  91. 91.
    D. Noble, A theory of biological relativity: no privileged level of causation. Interface Focus 2, 55–64 (2012)CrossRefGoogle Scholar
  92. 92.
    Oxford Advanced Learners Dictionary (Oxford University Press, Oxford, 2000) pp. 1414–1422Google Scholar
  93. 93.
    M.J. Page et al., The suppression of star formation by active galactic nuclei. Nature 485, 213–216 (2012)ADSCrossRefGoogle Scholar
  94. 94.
    L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, 1960)Google Scholar
  95. 95.
    L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics with Applications to Chemistry (Dover, Mineola, NY, 1963)Google Scholar
  96. 96.
    A.R. Peacocke, An Introduction to the Physical Chemistry of Biological Organization (Oxford University Press, Oxford, 1989)Google Scholar
  97. 97.
    J. Pearl, Graphs, causality, and structural equation models. Sociol. Methods Res. 27, 226–284 (1998)CrossRefGoogle Scholar
  98. 98.
    J. Pearl, Causality: Models, Reasoning, and Inference (Cambridge University Press, Cambridge, 2000)Google Scholar
  99. 99.
    R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Jonathan Cape, London, 2004)zbMATHGoogle Scholar
  100. 100.
    R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Knopf, New York, 2011)zbMATHGoogle Scholar
  101. 101.
    I. Percival, Schrödinger’s quantum cat. Nature 351, 357 (1991)ADSCrossRefGoogle Scholar
  102. 102.
    G.A. Petsko, D. Ringe, Protein Structure and Function (Oxford University Press, Oxford, 2009)Google Scholar
  103. 103.
    S. Pilosof, M.A. Porter, S. Kéfi, Ecological Multilayer Networks: A New Frontier for Network Ecology (2015). http://arxiv.org/abs/1511.04453
  104. 104.
    D. Purves, Brains: How They Seem to Work (FT Press Science, Upper Saddle River, 2010)Google Scholar
  105. 105.
    H. Putnam, Philosophy and our mental life, in Mind, Language, and Reality (Cambridge University Press, 1975)Google Scholar
  106. 106.
    A.I. Rae, Reductionism (Oneworld, 2013)Google Scholar
  107. 107.
    E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)ADSCrossRefGoogle Scholar
  108. 108.
    D. Rickles, Supervenience and determination, Internet Encyclopedia of Philosophy (IEP) (2013). http://www.iep.utm.edu/superven/
  109. 109.
    R. Rhoades, R. Pflanzer, Human Physiology (Saunders College Publishing, Fort Worth, 1989)Google Scholar
  110. 110.
    F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes: Exploring the Neural Code (MIT Press, Cambridge, Mass, 1999)zbMATHGoogle Scholar
  111. 111.
    S. Sarkar, Genetics and Reductionism (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  112. 112.
    W.C. Saslaw, Gravitational Physics of Stellar and Galactic Systems (Cambridge University Press, Cambridge, 1987)Google Scholar
  113. 113.
    S. Schweber, Physics, community, and the crisis in physical theory. Phys. Today 34–40 (1993)Google Scholar
  114. 114.
    D.W. Sciama, The Unity of the Universe (Faber and Faber, London, 1959)Google Scholar
  115. 115.
    A. Scott, Stairway to the Mind (Springer-Verlag, New York, 1995)CrossRefGoogle Scholar
  116. 116.
    W. Seager, Natural Fabrications: Science, Emergence, and Consciousness (Springer, Heidelberg, 2012)Google Scholar
  117. 117.
    J.R. Searle, Making the Social World: The Structure of Human Civilisation (Oxford University Press, Oxford, 2011)Google Scholar
  118. 118.
    S. Seung, Connectome (Houghton Mifflin Harcourt, Boston, 2012)Google Scholar
  119. 119.
    J. Silk, The Big Bang (Freeman, New York, 2001)Google Scholar
  120. 120.
    H.A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, Mass, 1992)Google Scholar
  121. 121.
    A.S. Tanenbaum, Structured Computer Organisation (Prentice Hall, Englewood Cliffs, 2006)Google Scholar
  122. 122.
    R.L. Trask, Language and Linguistics: The Key Concepts (Routledge, Abingdon, 2007)Google Scholar
  123. 123.
    K. Umashankar, Introduction to Engineering Electromagnetic Fields (World Scientific, Singapore, 1989)Google Scholar
  124. 124.
    R. Van Gulick, Who’s in charge here? And who’s doing all the work?, in Mental Causation, ed. by J. Heil and A. Mele (Oxford University Press, Oxford, 1995)Google Scholar
  125. 125.
    A. Vázquez, R. Dobrin, D. Sergi, J.-P. Eckmann, Z.N. Oltvai, A.-L. Barabási, The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc. Nat. Acad. Sci. 101, 17940–17945 (2004)ADSCrossRefGoogle Scholar
  126. 126.
    A. Vazquez, A. Flammini, A. Maritan, A. Vespignani, Global protein function prediction in protein–protein interaction networks. Nat. Biotech. 21, 697–700 (2003). arXiv:con-mat/0306611
  127. 127.
    S. Vogel, Cats’ Paws and Catapults: Mechanical Worlds of Nature and People (W W Norton and Company, 2000)Google Scholar
  128. 128.
    A. Wagner, The Origins of Evolutionary Innovations (Oxford University Press, Oxford, 2011)CrossRefGoogle Scholar
  129. 129.
    J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levine, R.M. Losick, The Molecular Biology of the Gene (Benjamin Cummings, 2003)Google Scholar
  130. 130.
    J.A. Wheeler, R.P. Feynman, Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157–181 (1945)ADSCrossRefGoogle Scholar
  131. 131.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)zbMATHGoogle Scholar
  132. 132.
    J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations